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PREFACE

This Note was prepared as part of Rand's "Enlisted Force Manage-

ment" project. The project, which is part of the Project AIR FORCE

Resource Management Program, is being performed for the Directorate of

Personnel Plans, Headquarters, United States Air Force. The purpose

of the project is to develop the specifications for an enlisted force

management planning system to replace the Air Force's current system

known as TOI'CAP (Total Objective Plan for Career Airman Personnel).

All of the models Ln the TOPCAP system are deterministic--i.e.,

they ignore the uncertainty inherent in projecting both the demand

(requirements) for manpower and the supply of personnel that will be

available to meet the demand. Before undertaking serious development

of new models, the authors carried out an investigation of the degree

of uncertainty implicit in personnel flows. The investigation was to

evaluate the need for incorporating uncertainty in the new models, and

to consider alternative ways of doing so.

This Note focuses on uncertainty in the supply of personnel: stay/

leave decisions of airmen, the composition of accession cohorts, reten-

tion rates, and recruiting shortfalls. It discusses the effect of

uncertainty on the relationships between these variables and such work

force characteristics as accession requirements, reenlistment require-

ments, and costs. The analytical tool used is a Markov chain model

representing flows in the first-term enlisted work force.

This Note should be of interest to personnel planners in the Air

Force and the other armed services, as well as to analysts developing

models for use in analyzing manpower and personnel policies in both

the public and the private sectors.
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The Air Force's TOPCAP system (Total Objective Plan for Career

Airman Personnel) includes a number of models that describe the flow

ol people through the enlisted work force. These models are deter-

ministic (e.g., they ignore the uncertainty implicit in personnel

loss projections) and most of them are steady-state (i.e., they ignore

the current enlisted personnel "inventory" and its evolutionary possi-

bilities). In this Note we address the impact on work force struc-

ture uncertainty of various factors related to the "supply" of

personnel: stay/leave decisions by or about individual airmen, the

makeup of accession cohorts, retention rate estimation, and recruiting

shortfalls. Specifically, we analyze the impact of uncertainty in

these random quantities on work force characteristics such as accession

requirements, reenlistment requirements, and personnel costs. Further,

these relationships are examined over time. We also discuss methods

for improving estimates of "flow rates" for personnel planning models

and for estimating how these rates will change under altered personnel

policies. The intent is to ascertain appropriate directions for ex-

tending Air Force personnel planning models, with particular regard to

uncertainty, rather than to describe the actual amounts of uncertainty

that exist or to demonstrate or evaluate different methods of dealing

with uncertainty.

We evaluate the extent of uncertainty in projections of work force

structures using an analytical Markov flow model that focuses on the

first-term enlisted work force. Our analysis indicates that projections

for many work force characteristics can involve sizeable uncertainties.

Two-standard deviation confidence intervals often contain values

differing 10 to 40 percent from corresponding expected (mean) values.

Individual stay/leave decisions comprise the largest source of this

uncertainty. Another potentially large contributor is uncertainty

in the proportion of accession requirements that actually can be met.

Uncertainties regarding the mix of people that can be accessed and

regarding estimates of flow rates, while important in projecting
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values for certain subsets of the work force, appear to contribute

less to uncertainty in overall work forcut hr.o teristics.

Since uncertainties in projectitg the v;lues of these character-

istics can be substantial, there may also be substantial uncertainty

in predicting the effects of policym.ik -.- ' dTci~hu. [his leads to tile

question of as ss..mient of risk--t f.it i.-, th,- pr,,hl,v if 1#etvrmining how

far off mean value calculations .ir I ik,Iv to be tor of lett!rm ining the

likelihood of certain undesirable events (e.g., unusually large

accession quantities or requi red reenil istment rates) . We conclude

that if "protection" fron undesirable events is important, it can be

obtained by adding to deterministic flow models constraints determined

using stochastic post-processors that could compute the approximate

probabilities of certain events and/or of actual results differing

from mean value estimates by specified amounts.

We also recommend that improved procedures be developed for

estimating probabilistic parameters in personnel flow models--e.g.,

loss rates. improved methods should provide consistent, interpretable,

and parsimonious sets of parameters for estimating flow rates, they

should incorporate time series data (in order to detect underlying

trends), they should include "environmental" data such as occupational

categories and corresponding civilian economic conditions, and they

should admit to statistical goodness-of-fit procedures.

Finally, we recommend that recently-developed retention decision

models (for the Air Force Officer Corps) be revised and extended to

predict how the flow behaviors for the various categories of enlisted

personnel will change if management "control" policies such as compen-

sation, promotion opportunity, educational benefits, or retirement

programs are changed.
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1. INTRODUCTION

Among the primary models tcnployed in planning and programming

for the viil isted component of the Air Forc work forct-, manv are

deterministic models of personnel flow. These models are part of the

'IOPCAP System (Total Objective Plan for Career Airman Personnel) and

inclide, lor example, the Objective Force 'lodel ('OBFOR") , the Ai r7..:.n

Force Steadv State Model ("the Static Model"), the Promotion Flow

Model ("the Dynamic todel"), the Five Level Redistribution Program.

("FLRP") , tihe Carver Progression Gro up Model ("CP( Static"), and

the Airman Skill Force Model ("ASKIF I1"). Several of these models

are ,titic (i.e., steady-state); they represent the work force

structure that should eventually develop if management policies,

manpower requirements, retention behavior, upgrade and promotion

rates, etc., remain unchanged. In addition, practically all of these

models treat only the career portion of the enlisted work force--

those individuals serving beyond their initial enlisted term of

service (which usually lasts four years).

In discussing possibilities for the form and structure of

extensions to the capabilities represented in the TOPCAP models,

especially with regard to improvi-ag analysis capabilities focusing

on the first-term work force, analysts at Rand and in the Air Force

jointly agreed that uncertainty must be considered directly. Many

of the inputs (e.g., retention rates) and virtually all of the outputs

of such models (e.g., reenlistnent rates and annual recruitment pro-

jections) are subject to uncertainty--often because they must be esti-

mated using sample data and/or because they may depend on future

decisions made by or about individual airmen. (Depending on the use

of the information, stay/leave decisions made by many thousands or

perhaps only a few airmen may be of interest.)

Uncertainty warrants special attention for two primary reasons,

one technical and the other having both technical and decisionmaking

ramifications. The first reason is that personnel flow models often

employ nonlinear equations to relate random quantities. For example,
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'required" first-term reenlistment rates are nonlinear functions at

requirements for c-areer force ent rant s, access ion qant it i es, and

retention rates. The expected value of one random variable in such

a relationship, unfortunately, cannot be found by replacing the other

random variables witi their expectations and solving the resulting

equation--at least not in general. We determined to address thlis

"nonlinearity of expectat ions' problem before beginning to develop

further deterministic models that ignore it. Tie se'cond reason for

examining uncertainty relates to possible alternat ivc forms for stat-

ing decision criteria and for specifying corresponding model objective

and/or constrai nL functions. For example, we might wish to c,,nside r

management options only if they provide confidence, of c, rtain tevents

occurring--e.g., a 90% chance that a particular career progression

group (CPG) would require a reenlistment rate no higher than 457

in 1983. Or we might want to consider a policy change only

if it is likely to yield results stibstantiallv diIferent from17 th1e

current policy--e. :., if A,. and Ay represent a part icular CPC's

accession requirement in 1983 under alternative policies X and Y,

respectively, we may want to assure a 90% chance that AX exceeds A,

by, say, 5 percentage points. Alternatively, we mav simply want to

know the probability that our expected-value estimates will be off by

particular amounts--e.g., what is the probability that our estimate

of the number of people in the fourth year of service for 1984 is off

by 10% or more? Assessment of uncertainty is obviously essential if

information of this type is to be provided to decisionmakers, and

underlying mathematical structure is clearly affected if "chance

constraints" are to be incorporated in planning models.

Since these concerls about unLcertaintv arose during consideration

of first-term planning models, much of this Note's discussion refers

to aspecLs of the i irst-term work force. Ne verrtheless, the concepts,

reciursive eqauitions, etc. can be generalized easilv to include tlhe

career work force as well.

The next section reviews previous research regarding uncer-

tainty in personnel flow models. We then address the sources



of uncertainty in personnel flow models, develop analytical means

for evaluating the extent of these uncertainties using a Markov model,

and present sample descriptive results based on an implementation of

the model that focuses on the first-term force. Identifying appropriate

categories of enlisted personnel and the flow rates among the categories

is critically important in personnel flow models. Section 4 addresses

gtat is ticall meth d s for discurn ivns, categories of airmen whose re-

tention behaviors (flow rates) differ and for predicting how their

behavior would change under altered management policies (e.g., larger

reenlistment bonuses, revised compensation tables, improved promotion

opportunities, or altered retirement benefits). We conclude with

recommendations for how uncertainty should be incorporated in future

personnel flow models and for statistical/behavioral modeling work

(related to personnel "supply") that should be accomplished and

incorporated in improved Air Force personnel planning and programming

models.
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2. RELEVANT PREVIOUS WORK

Personn-l flow models that incorporate uncertainty typically

are either Markov chain models, renewal models, or simulation models.

Markov chain models are "push" models in the sense that flow occurs

due to natural progression from one state (e.g., pay grade or length

of service) to the next, and due to the influx of new personnel

into the system. Renewal models are "pull" models driven by the

need to fill vacancies. Simulation models can be either push or

pull models or combinations of the two.

Markov chain models assume that from one observation to the

next the net changes in state exhibit the Markov property. That is,

the probability of changing from one state to another depends only

on the current state, and not on how that state was reached. Such

models describe how changes (transitions) occur between states from

one time point to the next using transition probabilities or pro-

portions. They generally are composed of three components (see,

for example, Bartholomew and Forbes [51):

o A description of how flows take place within the system

(specified by transition probabilities);

o A description of how attrition occurs from the system

(specified by attrition rates);

o A specification of the number of recruits at each point in

time and the allocation of recruits to different states or

categories.

The two primary uses of a Markov chain model are prediction

of future behavior of the system (assuming no change in the para-

meters) and control of the system through policy changes (e.g.,

by altering recruitment, changing promotion rates, or expanding

or contracting certain categories). Thus the problem of control

arises naturally as a consequence of prediction.

In the Markov chain model, the transition rates typically

are fixed, while the numbers of people in different states (or

categories) change iver time. In contrast, the renewal model has

I } I I I m mU



-5-

fixed numbers of people in the different states, while the flows are

allowed to vary. A renewal system model can possess awkward mathe-

matical features, but simple renewal systems can be handled within

the Markov chain framework (Bartholomew [4)). The central assimptions

of the renewal model relate to wastage flow (i.e., losses, or departures

from the work force) and how this flow depends on length of service. Since

for the first-term enlisted force the state (category) sizes are not

fixed, a renewal model seems less appropriate than a Markov chain

model. The renewal model would be more appropriate for studying a

long-term system, such as the career force, since vacancies play a

larger role in career force management.

Renewal models seem inappropriate in our context for other

reasons as well:

o First-term airmen move lock-step through their first term

of obligation (their promotion and upgrade times vary

little);

o They are promoted more on the basis of length of service

and skill qualification than on the availability of vacancies

(vacancies become more important at the higher enlisted grades

and in officer grades);

o The primary Air Force policy controls applied to the first-

term work force concern enlistment and reenlistment, and

these depend mainly on length of service and overall numer-

ical requirements rather than on vacancies;

o The main vacancy aspects of first-term work force modeling

concern the needs for (a) career force entrants to sustain

a desirable and stable career work force structure and (b)

raw recruits to achieve an overall work force of specified

size--and both of these can be incorporated, as we shall

see, in a Markov model.

In the steady state, it is difficult to distinguish between

Markov chain and renewal models from state size and flow rate data

alone. This is because state sizes achieve equilibritim in the

Markov chain model and flow rates achieve equilibriiun in the renewal

model. Thus, as described in Bartholomew [4], in the steady state
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either model performs equally well with regard to expected values.

The distinction may become crucial, however, in modeling the transient

behavior of the system. Moreover, the Markov chain model permits much

easier evaluation of standard deviations (a measure of uncertainty)

for the random quantities of interest.

A third method for incorporating uncertainty in personnel flow

modeling Employs simulation models (or Monte Carlo models, as they are

widely termed). Simulation models are typically employed when computa-

tionally more efficient methods prove inadequate in representing the

details of system operation. A recent example of a simulation

approach to personnel flow modeling--indeed to Air Force work force

modeling--is the Integrated Simulation Evaluation Model [14].

This model, however, has as its primary aim the prediction of central

tendencies--expected numbers of accessions, promotions, transfers,

etc.--rather than of variations around expectations. Simulation

modelers quite often ignore such uncertainty, although there is a

substantial literature regarding variance reduction techniques (see,

e.g., Fishman [101). In contrast, our aim is to examine the extent 11
and sources of uncertainty or "spread" that are ignored in widely-

emiployed deterministic personnel flow models. Further, the relative

simplicity of the flows in typical personnel planning models makes

the computation expense of full-fledged simulation techniques un-

necessary. As will be seen later, however, we do resort to simulation

to augment our analytic Markov model in one situation (in order to

consider uncertainty in estimates of the transition and accession

probabilities) because the analytic stochastic model simply becomes

too complex. We find that combining analytic and simulation models

to represent uncertainty achieves a desirable degree of economy in

both analysis and computation time.

The bulk of the open literature on personnel flow models employs

the Markov chain structure but ignores its implicit uncertainty.

Instead, the focus is on expected values, and most treatments could

more accurately be termed deterministic fractional flow models than

Markov chain models. Grinold and Marshall 1121, for example, in a

longitudinal comparison of two cohorts of U.S. Harine Corps entrants,
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note a "significant divergence" in the numbers remaining after

several years. Probabilistically, however, that divergence should

not be thought uncommon--i.., it could not be characterized as

"statistically significant."

The most notable publications regarding uncertainty in personnel

flow models are by Bartholomew (see, e.g., Refs. 1 through 6).

Mainly, however, Bartholomew merely catalogs the various sources of

uncertainty and suggests circumstances where they are likely to be

important; he generally does not show how to evaluate the extent

of uncertainty. But he does note ([5], p. 110) that stochastic var-

iation can be quite large and its analysis difficult:

the errors in forecasts are likely to be quite large--
the variances of the predictions being of the same order
as the predicted values themselves. On top of this there
is a further source of error arising from the fact that
in most applications some, at least, of the parameters
have to be estimated .... This source can give rise to
errors of a similar magnitude to the random error
arising from the stochastic assumptions of the model.
This takes no account of the uncertainties of yet
another kind arising from changes in the parameters
which may occur during the forecast period. The
whole question of how to cope with uncertainty in
manpower planning is a complex one....

Finally, we note that previous work is concerned more with

long-term (steady-state) than near-term (dynamic) aspects

of work force modeling. Air Force enlisted personnel management

is conducted in a notably dynamic environment, however, so our

analysis examines the nature and size of uncertainty in this

setting.
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3. A RUDIMENTARY STOCHASTIC PERSONNEL FLOW MODEL

To ascertain the significance of uncertainty in nonlinear

relationships, its magnitude, and the contributions of its various

sources, we have developed a basic Markovian flow model that

represents a simple, first-term work force. The sources of

uncertainty considered (all of which are ignored in current Air Force

personnel planning models) are:

1. Attrition (Retention) Behavior -- uncertainty due to

the fact that the work force consists of individuals, and

the numbers of these individuals who elect to leave the

service or whose service the Air Force elects to terminate

cannot be known precisely in advance. To illustrate, a

projected first-year loss rate really represents a

probability that an individual recruit, chosen at

random, will not complete his or her entire first

year of obligated service.

2. Accession Mix -- uncertainty due to the fact that the

proportion of new recruits possessing particular character-

istics--e.g., designated according to educational background,

sex, race, marital status, or mental aptitude (characteristics

that may correlate with retention behavior, productivity,

and/or cost)--cannot be known precisely in advance. For

example, a valuable input to a first-term personnel flow

model might be the fraction of recruits having at least a

high school education; in fact, this fraction estimates the

probability that a new recruit, chosen at random, will have

completed high school.

3. Parameters -- uncertainty due to the fact that the values

employed to represent retention and accession probabilities

are themselves only estimates. Depending on the size and

nature of the historical data sample used to estimate

these probabilities, there may be considerable uncertainty
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regarding their actual values. Further, prediction of

the values of these parameters under altered management

policies (e.g., revised compensation patterns or pro-

motion opportunities) introduces additional uncertainty.

4. Costs -- uncertainty due to the fact that expenditures

to support different individuals within the same general

category may vary. For example, within a particular year

of service and within the same occupational specialty,

individuals' pay and benefits may dfir because they

hold different pay grades, havc different family situations,

experience different health prohLems, etc.

While there may be numerous otlJev7 63 ies of uncertainty, important

in some situations (e.g., differences in job cr task performance capa-

bilities among apparently similar indfduals), these are not considered

here.

We should note early that the model is analytically based. It

employs time-recursive relationships among key work force characteristics;

individual behavior is not simulated in a Monte Carlo sense. Rather,

probabilistic group behavior is considered. We resort to simulation

only when necessary--namely in addressing the contributions of uncertainty

implicit in underlying parameter estimates.

Recent consensus also emphasizes the importance of dynamics in

personnel flow models. Most current personnel models are static

rather than dynamic; hence they can yield only steady-state results

concerning composition of the work force, attrition, and associated

costs. In contrast, dynamic models can provide these results along

with information about how long it may take to achieve a steady-state

(static) distribution and information about the behavior of the system

along the way. Our model has a dynamic structure, permitting us to

investigate how uncertainty varies with time.

The model developed here incorporates several simplifying assump-

tions, notably:
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1. A Four-Year Term of Service. Although airmen may enlist for

either four or six years and although other enlistment terms are cer-

tainly possible, we treat a four-year first-term enlistment becaust,

that is currently the primary mode and becaiuse our model is designed

for e xmroratory rather than descriptive use.

2. Specialty-Specific Categorization. Because (1) we exppect uncer-

tainty to be more significant when smaller personnel groups are con-

sidered, (2) manpower re!quirements typically are specified for

individual occupations, and (3) it is computationally simpler

to ignore the crosstraining and direct assignment channels which can

move individuals from one occupation to another, we proceed as if

we are considering only a single occupation. [Note: as structured,

the model certainly can be employed to represent larger personnel

aggregations, but at the expense of accuracy in representing individual

occupations. ]

3. No Cross-Flow Among Categories. Again, although transitions

such as changes in marital status, number of dependents, skill level,

pay grade, etc., certainly occur for individuals within the first-

term enlisted work force, we exclude them here in the interest of

simplicity. The model can be extended to include such transitions

in a fairly straightforward manner.

4. Fixed Work Force Si7e. Because our intent is to investigate

the uncertainty inherent in personnel flow models and not the un-

certainty implicit in (often fluctuating) manpower requirements, we

treat the total size of the first-term work force being considered

as constant. It would be a straightforward extension to allow this

size to vary over time due to planned requirements changes. One

extension we do incorporate later is the possibility of recruiting

shortfalls; that is, although the required number of people may not

change, the number having the proper qualifications who can actually

be recruited may be inadequate to bring end-strength up to the

desired level.

These seemingly restrictive assunptions clearly can be relaxed

if it is desired to build a model embodying more of the detailed



reality of possible personnel flows. But we believe the present

model can provide the necessary insight into the magnitude and

importance of uncertainty in personnel flow models.

Here we will focus on determining means and variances for

important work force characteristics such as accession quantities,

year-group sizes, required reenlistment rates, and costs. We

focus on means because of the potential nonlinearity problem

and because they are the conventional indicators of central

tendency. Variances (and standard deviations), correspondingly,

are the usual indicators of uncertainty or "spread," and are

typically more tractable computationally than alternative measures

of uncertainty. Ideally, of course, we should obtain entire pro-

bability distributions for the quantities of interest, but that

seems neither necessary nor practical for this exploratory analysis.

The remainder of this section describes the basic model

more explicitly; detailed mathematics are relegated to Appendix A.

We begin by describing the model's basic inputs: attrition rates,

accession mix, etc., and their probabilistic interpretations. Then

follows a brief discussion of the uncertainty associated with

important parameters in the model and how it is represented. The

third subsection describes the model's computed outputs, and the

last subsection presents example results and relevant observations

and conclusions.

3.1. lodel Inputs

In this section we give a brief overview of the model and describe

its basic inputs. The fundamental model inputs, each described below,

are:

o Subdivisions of the work force, characterized by year of

service (YOS) i and category m.

o Work force size.

o Attrition rates.

o Accession mix.
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o Costs.

o Planning horizon.

Subdivisions of the Work Force. For simplicity we assume that

all airmen enlist for a four-year period. Thus, for any calendar year

t, an airman belongs to year-of-service (YOS) i where 1 < i < 4 .

Individual airmen can be categorized according to any number of char-

acteristics such as education (e.g., high school graduate), race, marital

status, mental aptitude test scores, pay grade, AFSC, etc. Transitions

between categories are not incorporated in the current model or computer

program (although they could be included in a fairly straightforward exten-

sion). Thus, for current purposes, individual characteristics which may chang

over time (e.g., skill level, pay grade, or marital status) should not

be considered as category-distinguishing characteristics. Within the

model, airmen in each calendar year t are distinguished by their

YOS i (I < i < 4) and category m (1 < m < M) . Notationally,

we let Nim(t) = number of airmen in YOS i and category m , for

calendar year t. This number is generally a random variable.

Work Force Size. In this model it is assumed that the work force

is kept constant at size N . Thus, we assume initially that the Air

Force can enlist as many airmen as necessary to keep its force size

fixed. N is a variable whose value is chosen by the decisionmaker.

For each calendar year t , we have

M 4
N = E E N im(t)

m-l i=l

We also treat in our examples and in Appendix A a case where the work

force size is a random variable--in particular, we admit the

possibility of recruiting shortfalls.

Attrition Rates. Attrition is treated by supposing that each

individual in YOS i and category m stays in the service another

year with probability p im (so that the probability of attrition

tAir Force Specialty Code, basically an occupational designator.

h.I..II M • I - .. . . .
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between YOS i and i + 1 is 1 - pim ). The individual stay/leave

decisions, whether made by the Air Force or the airman, are assumed

to occur independently of one another. Thus, for a particular per-

sonnel group (say YOS i and category m), the number remaining

from one year to the next has the following conditional binomial

probability distribution:

P(N (t + 1) = k I Ni(t) = n) = Pk (1 - p. ) nk
i+l,m i'm im im

Accession Mix. In treating accessions into the first year of

service, the model assumes that we first observe the total number

of people leaving the force from each year of service and each

category. Hence, the number of people needed to enter the first YOS

in calendar year t + 1 to keep the force size fixed at N is

4 M
L(t + 1) = N - E E N jm(t + )

J=2 m= j

Equivalently, enough airmen must be enlisted to ensure that

M
E N1M (t + 1) = L(t + 1)•

m=

Now each N1M(t + 1), 1 < m < M is a random variable whose

distribution must be determined. We consider two methods for

modeling these random variables:

0 Fixed proportion model. Here it is assumed that N (t + 1)

is a fixed fraction of L(t + 1) Let i 1 ... , ' TM be
M

positive numbers such that E it I . (These are the
m=1

accession mix parameters). If L(t + 1) takes the value
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k , this approach assumes N (t + 1) T k.
1M m

o Multinomial model. In this perhaps more realistic model, we

take the parameters lI''... IrM as representing probabilities.

In particular, we assume that N11 (t + ),..., N IM(t + )

are jointly multinomially distributed with parameters

L(t + 1) and 7i''''' TM * The conditional probability

density function is

P (N11 (t + 1) = n i .... NIM(t + 1) = nMIL(t + 1) = k)

k! nl n.
Z f(n I ... '"N) =nl n2 .. M I"'7

n 1n !. . 1 M

where n1 ,..., nM are nonnegative integers such that

M
E n = k.

m=l m

Thus, given L(t + 1), the variable N m(t + 1) is not random using the
fixed proportion model, but it is random using the multinomial model.

However, since L(t + 1) itself is random, N lm(t + 1) is

actually random in both models.

Costs. Since the expense of maintaining the work force is of

obvious interest, cost values are included as model inputs. A cost

Cim(t) is associated with each YOS i and category m during

planning ycar t. Cim (t) is the yearly cost for one airman with

characteristics (i, m) Since in fact, different airmen in the

same class (i, m) may be compensated differently, depending on

marital status, pay grade, etc., our model treats Ci (t) as a random

variable. The question of uncertainty in costs is treated in greater

detail in the next section.

Planning Horizon. Since the model is dynamic as well as

stochastic, the length of the planning horizon is an input value.

Thus, the model may be used to answer questions concerning enlistment

quantities, reenlistment rates, costs, etc., five years from now,



ten vears from now, etc. If no policy or behavioral changes occurred,

the long-r wn solutions would eventuallv converge to the sleady-state

(equilibritsn ) answers.

3.2. Treatment of Uncertainty in Input Parameters

' e now address the question of modeling the uncertainty in several

of the parameters just mentioned: the retention rates (the p 's) ,

accession mix (the 's) and costs (the C (t)'s). The values of
_____ ____im

these parameters are uncertain because they can be estimated onlv from

historical data, and historical estimates themselves possess some innate

variabilitv. One method of treating uncertainty in these parameters is

explained more fully in Appendix A. There we hypothesize that the

parameter estimates are based on one year's observation of a work force

of size N, the same as we assume for future work force sizes. (This is

convenient for exploratory computational purposes and is consistent

with Air Force use of the most reLent year's data for estimating future

retention rates, etc.) We denote the number of people from this

historical data set in year of service i and category m as n. . The
Im

estimate Pim of the retention probability pim has a variance inversely

proportional to nim . -he estimate 7 of the accession mix parameter

I has variance inverselv proportional to k nlk.

For our computer code, the estimate of p. has been modeled as

if it had a normal distribution with mean p. and variance p.m(1-p.m)/n.
in n i im

Future refinements of the model should consider any dependence among

the estimates of the retention rates and should model the distribution

of their estimates more precisely. (The normal approximation is

generally good for large nim, but not for small n. .) The assumptionim
that the estimates of pim and p.j for m # k are independent is probably

fairly reasonable, since events concerning individuals in different

categories are likely to be independent of one another. The assumption

that the estimates of p im and Pi+l,m are independent is perhaps less

reasonable, and this assumption merits further investigation. (This

is beyond the scope of this study, but can be considered within the

context of the statistical behavioral models discussed in Section 4.)
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The est imates oi , " T cannot he treated as if they were

independent, since 1l + + M = 1. For reasons described in

Appendix A, the distribut ion oi the estimates of (T, ... "4 can be

modeled as a Dirichlet distribution. In this case, the variance i

the estimate of im is inversely proportional to E n and the correla-
m k 1k

tion between the estimates of ri and rT m # Z, is negative.

There also can be considerable uncertainty in the costs C im(t)

associated with the different classes (i, m). This is because an

individual selected at random from class (i, m) may be payed con-

siderably more (or less) than another individual from the same class,

depending on the pay grade each holds, the number of dependents each

has, etc. Our model assumes that the variances Timim = Vat [C m(t)

and the covariances Tim'jz = Cov [Cim(t), C j(t)] have the form

T g= )Tim,i m =gi

Ti = pg(i) g(J)

where g(-) is some suitably chosen positive function, and 0 < p < 1

Thus the correlation between two classes (i,m) and (J,t) is p

If uncertainty in cost turns out to be important, more work will be

required to determine a more realistic formulation for the variances

and covariances of its components.

The random variables X1 ,..., XM have a D)irichlet distribution
with parameters (t] 0,..., tM 1 0 if their joint density has the
form

f(X(a I1 + , .+ OLM)  C - I  .. MaM- I

f(x 1 ,-.., x )  r(a 1 ) .. r(c M) x l .

where
M

r(.) is the gamma function, each x > 0, and E x = 1
m mm=lm

KlII - . . - . .. II . -
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3. 3. Computational Outputs

The primary computational outputs of our model are:

1. The means (expected values) and covariances of the numbers

of individuals in the various classes (i, m) for each

year t (these include accession quantities); i.e., E(N im(t))

and Coy [N im(t), Nj (t)]

2. The mean value and standard deviation of the number of

accessions for each year t ; i.e.,

SM 11/2
E K Nlm(t) and Var E Nl(t)m=I Im m=I I

1. 11V medn val ie and standard deviation of the required

k'vrall reenlismetit rate for each year t. We shall

ttssuLIne that the desired reenlistment quantity, say R, is

known. This value may represent the number of people

required to enter the career portion of the work force in

order to achieve some personnel structure there (e.g., the

"objective" work force structure identified using OBFOR for

a particular CPG). For convenience, we take the reenlist-

ment target R as proportional to the fixed first-term force

size N; i.e., we use R = cN or Rm = c mN, respectively,

depending on whether we are considering an overall or a

category-specific reenlistment rate. Consequently the

required reenlistment rate is defined as the quotient of

the reenlistment target R (fixed) and the total size of the
M

fourth-year group (random), i.e., wt = cN/Z N(t), and

we wish to compute the mean Ew and standard deviation

{Var wt)i/2 of the required reenlistment rate.
t

tFor a random variable X, we will use both EX and E(X) for the

mean of X, and both Var X and Var(X) for its variance.
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4. The mean value and standard deviation of the reenlistment

rate for each category m, for each year t; i.e.,

E wmt and War (w m)}i2

where

W mt = Cm N/N 4 (t)

5. The mean value and standard deviation of the cost of the

first-term force for each year t ; i.e.,

1/2
E C(t) and {Var (C(t))}

where

4 M
C(t) = E E Cim (t) N im(t)

i=1 m=1

The model can evaluate these quantities for the cases where the

Pim's are fixed or random, the wm's are fixed (both the fixed

proportion model and the multinomial model) or random, and the costs

C Im(t) are fixed or random.

3.4. Results and Observations

In this section we present results, conclusions, and reccomen-

dations reached from exercising a computerized version of this model--

using a range of assumptions and input parameters.

3.4.1. Parameter Inputs

For exploratory purposes, we use total force sizes of N = 100,

500 and 1,000 and a planning horizon T of 10 years. For illustration,

we assume that personnel are classified according to two characteristics

(e.g., A - educational background and B = sex), each characteristic

• " j
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having two levels or values (e.g., nongraduate or high-school graduate

and male or female, respectively). Thus personnel are subdivided into

M=4 categories or cells. Table 1 presents the list of accession mix

paramneters.

Table I

ACCESSION MIX PARAMETERS

B B,

A 0.40 0.05

A , . 45 0. 10
(. ) ("4)

3 4

Thus 71 = 0.40, 72 = 0.05, r3 = 0.45, T4 = 0.0-- i.e., 10% of new

accessions have the second "value" for characteristic A and the

second "value" for characteristic B. (Throughout, the data we

employ are only indicative. The intent is to explore the potential

importance of uncertainty, not to measure it precisely.)

The retention probabilities p m are listed in Table 2. To

illustrate, P3 2 = .95 reflects an estimate that an average of 95%

of the personnel in Category 2 who complete 3 years of service will

complete their 4th year of service.

Tabl e 2

RETENTION PROBABIILITIES

Cat egory

YOS 1 2 3 4

1 0.900 0.920 0.880 0.810

2 0.920 0.950 0.910 0.880

3 0.940 0.950 0.940 0. 900

, m, i m i J
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As explained earlier (Section 3.2) when the accession mix

parameters and the retention probabilities are treated as random

quantities (assumed to be estimated from historical data), their

variances are assumed to be proportional to 1/(k 
n  ) and /n

respectively, where ntm is te number of people in YOS i and category m

in the historical sample.

Specifically, recall that the retention probability for the

ith YOS and cell m is modeled as a normal random variable with

given mean p and variance p (1 - p1,) / n1 m, and that the

accession parameters are modeled as a Dirichlet distribution, so

that the accession parameter for cell m has mean ir and variance

1 (- / -T n + I). Sin(e (or real i sm) we wish n. to
m 11]1In

vary proportionatelY to the work lorce size N (and for convenience

and ease of computation), we introduce proportionalitv parameters rim,

defined as ym . IN, or nim .lir

The fixed values of r. are displayed in Table 3. Thus, for

example, if N = 100, the number of people n23 4in the historical

data set) in the second YOS and third category is about 12 (so the

variance of P2 3 is proportional to 1/12). For N = 1,000, this number

is about 124 (so the variance of p2 3 is proportional to 1/124).

We have characterized the uncertainty in the accession mix param-

eters and the retention rate estimates as depending on N, the size of

Table 3

PROPORTIONALITY PARAMETERS

Cat egory

YOS 1 2 3 4

1 0.1290 0.0161 0.1452 0.0321

2 0.0903 0.0181 0.1239 0.0258

3 0.1016 0.0068 0.0903 0.0271

4 0.0890 0.0155 0.0735 0.0155
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the work force being considered. For convenience, the initial work force

structure N m (0) is also directly proportional to N. To begin the compu-

tation we must input the initial force { Nim (0) . We set Nim (0) = N6im,

where the relative mix parameters 6. are listed in Table 4. For ex-

ample, if N = 1,000, then initially there are 100 people in Category 3

in their second year of service.

Table 4

RELATIVE MIX PARAMETERS

Category

YOS 1 2 3 4

1 0.130 0.020 0.120 0.040

2 0.090 0.030 0.100 0.030

3 0.100 0.020 0.080 0.040

4 0.080 0.030 0.070 0.020

The expected costs ECim are listed in Table 5.

Table 5

EXPECTED COSTS

Category

YOS 1 2 3 4

1 7,400 7,200 7,400 7,300

2 8,200 8,000 8,200 8,000

3 9,100 8,900 9,100 8,900

4 9,600 9,500 9,600 9,500

Here we assume, only for simplicity, that costs do not depend on time t.
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The standard deviations of the costs for each category

are displayed in Table 6.

Table 6

STANDARD DEVIATIONS OF COSTS

YOS
i Standard Deviation

1 600

2 550

3 700

4 800

To obtain the covariances between costs for different categories and

years of service as described in Section 3.2, we set = 0.80.

Using these example data, we turn our attention to our two

primary concerns, the "nonlinearity of expectations" problem and the

associated uncertainty in computed estimates of (random) quantities.

In our analysis we examine five different cases :orresponding to

increasing levels of uncertainty in the model:

Case 0: The completely deterministic case with no uncertain

parameters, no uncertainty in stay/leave decisions,

and no uncertainty in the distribution of accessions

among the m categories.

Case 1: Tncertainty in stay/leave decisions (characterized by

known p's), and proportional accessions with known r's.

Case 2: Same as Case 1, but assuming multinomial accessions with

known T'
1 
s.

Case 3: Same as Case 2, but with estimated (random) p's and

Case 4: Same as Case 3, but with random L* (accession shortfalls

are allowed).
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In Case 4, the actual number of accessions L is assumed to be

a random variable with mean , L and variance L, where L is the

required number of accessions to keep the total force size fixed at
+

N (see Appendix A for details). In the limit (as the time horizon

grows) the expected value of the total force size is slightly higher

than - N. In our analysis we chose a = 0.90.

3.4.2. Nonlinearity in Means

Current personnel force flow models typically involve nonlinear

equations that relate descriptive random variables (such as

accessions, attrition rates, reenlistments and costs), but use only

mean values of these random variables in computations and completely

ignore the associated uncertainties in the results. One of the

primary goals of our research has been to determine the effects of

uicertainties in these variables on the computed outputs of such

models.

We have found that for the limited (but representative) parameter

values we have emploved, the "nonlinearitv in expectations" problem

is not serious. Th computed means vary lit le amonc the four cases

examined. It can be seen from ttie equations in Appendix A that except

for reenlistment rates, there is 11o ditfeenc in means between cases

I and 2. (Required reenlistment rates are an exccptional case since

they are inverses of random quantities. Reeni istment rates will be

discussed in greater detail below.) The reason is that the computations

of the mean involve tle same va Iles of T in the fixed-proportion and

multinomial cases and do not involve the variances. Case 0, the deter-

mintstic case, will have the same mean as cases 1 and 2 (again, except

tor reenlistments). Moreover, it can be shown trom resuilts in Appendix

A that the fotirth case is "linear -- that is, any change in the mean is due

to the "shorttall" parameter ,x and not to a nonlinear equation. Thus

only in case 3 (randomness in retention and mix parameters) is there a

-e assume that 0 - 1, 'l. Further, as can be seen trom the e(uations

in Appendix A, the results onl\ depend on the mean and variance ot I.,

;and not on the torm of its probability densitv function.
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"nonlinearity in expectations" problem. But for accessions,

year-group size and costs, the means vary little between case 2 and

case 3. As can be seen from the tables in Appendix B, the difference

in means (for N = 1,000) is generally much less than 1%. Even for N = 100,

the difference in means for accessions between case 2 and case 3 is

at most 2%-4%. For fourth-year group size (still N=l00), the difference

for the total group and also the large cell is 2%-4%; for the small

cell it is at most 16%. However, since the expected cell size is only

about 1.2, this 16% difference is uninteresting. For costs, the difference

is generally 0.2% or less. It can happen for these three quantities

that the mean may either increase or decrease between case 2 and case 3.

As is expected, there is always a decrease in mean between case 3 and

case 4.

It is also of interest to examine the quotients of computed

means for the different work force sizes--e.g., comparing the

accessions mean for N = 1,000 with that for N = 100. For all computed

quantities (accessions, fourth-year-group size, and cost) we found

that the ratio of the computed mean for N = 1,000 to that for N = 100

was always 10/1 for case 1 and case 2 (as is expected). However,

for cases 3 and 4, the ratio is not generally 10/1, but may vary

from 9.75 (accessions into a large cell) to 11.82 (for the

fourth-year group in a small cell). This is due to the fact that

the variances of the p's and 7's are taken as inversely proportional

to the work force size and not due to any underlying nonlinearity of

expectations.

The mean required reenlistment rate is the expectation of the inverse

of a random variable. The function 1/x is more curved when x is

closer to zero. Thus if the mean of the fourth-year-group

size Is small, we could expect the mean required reenlistment

rate to be affected by the "nonlinearity problem." But the

variance of the fourth-year-group size also is potentiallv important.

The mean reenlistment rates can he approximated by a Taylor series

expansion of the function I/x. As shcwn in Appendix A, the

approximation involves the use of both the mean and variance of the

fourth-year-grotip size (eitiier in total or by cell). Since the

variance of the fourth-year-group size increases over all four
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cases (as described below), and since the fourth year-group mean

decreases between case 3 and case 4, the mean required reenlistment rate

steadily increases from case I to case 4. However, this increase

in mean is so slight as to be almost negligible, with the exceptions

of case 4 and/or small cell size.

For N = 1,000, the change in mean reenlistment rate for the total

group and for the large cell is at most 2% across the 5 cases; for the

small cell it is at most 14%. For N = 100, the total reenlistment

rate mean varies at most 3%; for the large cell it varies at most 10%;

the computed mean reenlistment rate for the small cell exceeds 1,

because of the Taylor approximation, and hence is not meaningful.

In summary, our analysis shows that the "nonlinearity in means"

question is generally no real problem, and that using expected values

in nonlinear equations to relate various quantities such as accession

quantities, reenlistment rates, fourth-year-group size and cost is

a safe practice, except when N (and consequently some expected cell

sizes) is small.

3.4.3. Incraase in Uncertainty

Although the degree of nonlinearity now appears of little

practical concern, the magnitude of uncertainty can be substantial--at

least warranting explicit consideration. As shown in the next sec-

tion, actual values of various random quantities of interest can

be quite different from their expected values. This undercuts con-

fidence in mean-value predictions of accession quantities, reenlist-

ment rates, etc.

To assess the magnitude of uncertainty associated with our

outputs, we use the coefficient of variation (CV)--the standard

deviation of a quantity divided by its mean. Notationally, this is

CV = a/P. Thus we may write the mean "plus or minus" two standard

deviations as P+2a = P(l+2CV). As can be seen from this formula,

all we need do to assess the magnitude of uncertainty is to compare the

CV (or 2"CV) with 1.
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Appendix B consolidates important outputs from numerous model

runs. For all four stochastic cases and for each year in the 10-year

planning horizon, the means, standard deviations, and coefficients of

variation are tabulated for total accessions, fourth-year-group size,

required reenlistment rate, and annual cost. For illustration, the

first three measures are also tabulated for two subsets of the work

force: the largest and smallest "cells" (e.g., male high-school

graduates and female nongraduates, respectively). Generally, the

CVs increase yearly, they typically approach their limiting values

after about four years (primarily because the model assumes a four-

year term of service), they increase from case I to case 4, they are

substantially larger when N is smaller, and they are larger for sub-

sets of the work force than in total.

For total accessions, we found that the CV increases slightly

over the first three cases, but that for case 4 it is double

the value of case 1. For case 4, the CV (10th year) is 0.316

for N=1O0 and 0.103 for N=1000. The large increases are from case 0

to case 1 (the simple addition of binomial choices) and from case 2

to case 3 (randomness in the p's and r's). For the large cell

(cell 3) the CV doubles from case I to case 3 and increases moderately

for case 4. All four sources of uncertainty contribute sig-

nificantly. The results for the small cell (cell 2) are even more

dramatic. Here we find that in some cases we get CVs greater than

one, for N=100.

Figure 1 divplays, as a function of work force size, the mean plus

or inInus twice the standard deviation for total accessions and for

accessions into the largest and smallest personnel categories (cells).

The graph is based on case 3 (uncertainty in attrition behavior,

accession mix, and in estimation of the p's and n's). Note that uncer-

tainty is substantially larger, relatively, for smaller subsets of the

work force.

For total fourth-year-group size, the CV generally increases by a

factor of 2 to 5 from year 1 to year 10. It increases slightly over

the first three cases, then nearly doubles for case 4. For case '4,

the (V ranges from 0. 192 for N = 10) to 0. 104 for N = 1000. The large

1 el el I r . .... ; ; 'i.
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Fig. 1 - Expectations and uncertainties in accession quantities
(fifth year in the planning horizon)
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increases are from case 0 to case 1 and from case 3 to case 4. The

CV for the fourth-year group in cell 3 ( i e largt, ell) increases

substantially over all four cases. It increasts, by' it t o tor ol rj're

than 2 between case I and case 4. I 1CiSct 4 tilhe CV T!ii, -

0.460 for N = 100 to 0.148 ,or N = 1000. For t he smnl I I,.1 h V

increases by a factor of three frtO case. I to CA-,c . It I cr .t

than I (for N=100) for both cases 3 and 4.

For total required reenlistment rates, the CV increases only

slightly for the first three cases, then nearly doubles for the fourth

case. In ctise 4, the CV varies from 0.297 for N = 100 to 0.103 for

N = 1000. Here, again, the large increases are due to case 1 and case 4.

For the large cell, each case contributes significantly to the increase in

CV. For the fourth case, CV ranges in value from 0.379 for N = 100 to

0.145 for N = 1000. For the small cell, the CV again increases signifi-

cantly for each case. For case 1, the CV is 0.346 at N = 100 and is

0.125 at N = 1000. For Case 4, it is 0.482 and 0.344, respectively.

Figure 2 displays a confidence band for the overall required reenlistment

rate as a function of the work force size N for the fifth year in the

planning horizon (again for case 3). Recall that this rate is uncer-

tain because it depends on the random number of people who actually

complete four years of service; the desired (required) reenlistment

quantity is held fixed. Note thai the confidence band widens con-

siderably when a small work force is considered but remains fairly

stable even for a fairly large first-term work force. (Recall again

that these work force sizes are representative for many Air Force

occupational specialties.)

As may be seen from Appendix B, the coefficient of variation for

the overall total cost was only about 7% (0.07). Since the input

standard deviations of the individual costs C m(t) were on the order

of about 7% of the means (the Cum's), this would indicate that the

cost results are dominated by these inputs. To verify this, we

doubled the input standard deviations of cost and found that the CV

of the overall total cost approximately doubled to 0.14. Thus, cost

uncertainties are sensitive to the ascribed values of these standard
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deviations, and, consequently, their accurate prediction requires

good estimates of these standard deviations. Such estimates could be

obtained in practice by using random samples from the Uniform Airman

Record (UAR).

Our findings regarding the increase in uncertainty due to the

successive sources in cases 1-4 are typified graphically in Fig. 3.

This display shows the coefficient of variation in each case for

total accessions, required reenlistment rate, and cost. Uncertainty

increases most notably with smaller work force sizes and with the

assumption in case 4 of enlistment shortfalls.

Finally, Figs. 4 and 5 reflect the dynamics involved in our model.

Figure 4 is a plot of total accessions versus time for the ten-year

horizon, and Fig. 5 is a plot of total required reenlistment rate

versus time. Again, both figures are based on case 3. The variation

over time apparent in these graphs is due to the fact that the initial

work force configuration is not the mean equilibrium configuration.

This "zigzagging" dampens over time, and the expectations of these

quantities eventually would converge to stable equilibrium values.

3.4.4. Assessment of Risk

These results indicate that uncertainties in projecting the values

of several work force characteristics can be substantial. We are

naturally led to wonder about the probabilities of certain events

occurring. For example, what is the probability that more than X

people will have to be recruited in 1984 in order to maintain a first-

term work force of a specified size, or what is the probability that a

reenlistment rate higher than 40% will be required in 1987 in order

to enter Y people into an occupation's career work force? Using

the means and variances identified with our stochastic flow model, we

can approximate these probabilities. We do this by using the method

of moments to estimate the parameters of probability distributions

that approximate those of the subject random variables. For example,

since N4 (t) = N4m(t), the number of people in the fourth year of

mU
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service in year t, is determined as the result of a large nunber

of decisions by or about individual airmen, we can expect that it

follows a normal probability distribution approximately. As an

illustration, consider N 4(t) in our example case with N = 100,

multinomial accessions, and uncertainty in the estimates of :m

and pi (i.e., case 3). In this case E[N 4(5) ] = 21.8 and

,'Var[N4(5)] 3.3. If we assume that N (5) has a normal probability

4 4

distribution, then we can determine the (approximate) probability

that, say, a rV'nlistment rate higher than 407, is required if 9 people

are to enter the career force in year 6:

P(9/N 4 (5) > .4) = P(N4 (5) < 9/.4 = 22.5)

P(Z < (22.5 - 21.8)/3.3 = .212) 0.584,

where Z is the standard normal random variable.

In this example, suppose that a required reenlistment rate as

high as 40% is something to be avoided, for example, because it may

require a reenlistment bonus. In this case (and in general) we may ask

what is the probability that our expected-value estimates will be off by

particular amounts--e.g., what is the probability that our estimate

of N4 (5) (E[N 4 (5)) is off by 10% or more? Figure 6 provides a

ready means for determining such error probabilities, providing the

random variable of interest can be assumed to follow a normal

distribution approximately. In this example, the coefficient of

variation of N4 (5) is about 0.15 (3.3/21.8 z; 0.15), and the graph

indicates a probability of about 0.48 that the actual value of

N4 (5) will differ from E[N 4 (5)] by at least 10%. (Note: 0.48

represents an interpolation between the CV = .10 and CV = .20

curves plotted in Figure 6.) Naturally, the smaller the per-

centage error we consider, the higher its corresponding probability.

But the smaller the coefficient of variation for the subject random

variable, the lower the probability of error. The dimensionless

nature of the graph in Figure 6 permits its use for estimating the
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error potential implicit in any of the mean values calculated by

our flow model--as long as the corresponding random variables follow

approximately normal distributions.

It would be comparatively easy to include this kind of risk-

assessment capability in a post-processor for deterministic personnel

flow models. That is, in addition to calculating the standard

deviations (and more accurate expected values) for work force

characteristics, a stochastic post-processor could compute the
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approximate probabilities of certain events and/or of actual results

differing from mean-value estimates by specified amounts.

As indicated in this study's introduction, Air Force analysts

and planners might desire to operate personnel flow models in such

a way that they preclude management actions which admit unacceptable

risks. For example, they may wish to establish recruiting levels

which give high probabilities that the numbers of people subsequently

available for reenlistment will be sufficient to make a reenlistment

bonus unnecessary. How difficult would it be to construct flow models

that could identify options providing protection from risk? To examine

the complexity involved in the necessary calculations, let us use the

example mentioned; that is, we seek to determine some number, A, of

people that should be recruited to assure a probability of at least b

that a reenlistment rate no higher than r will be required to reenlist

c of these people for the career force. More specifically, we want to

find the minimum value a such that

P(R = c/Y < r I A = a) > b,

where R is the (random) required reenlistment rate of interest, and Y is the

number of people remaining after four years of service of those a who

are recruited initially. Since Y has a conditional binomial distribution

(conditioned on a) in case the first-term annual retention probabilities

are known with certainty, then the normal approximation to the

binomial distribution can be employed to obtaint

2 2 2 2 22
2pc/r + zbp(l-p) + [2pc/r + z~p(l-p)] - 4 p c2/r

a=
2 p2

where p P lm 2m3m represents the probability that an individual

recruit makes it through his initial four-year obligation, and zb

satisfies P(Z>zb) = b. For example, if c = 9, p = .75, r = .4, and

tSee Appendix C for the derivation.
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b = .90, we find a = 34.33 or, rounding up to an integer, 35. This

contrasts with the 30 people (determined as 9/[(.4)(.75)] = 30)

wt would obtain from a deterministic treatment assuming a

reenlistment rate of .4 could be attained. Thus, in this case,

"insurance" against having to offer a reenlistment bonus costs

about 17% in added accessions and overall (expected) first-term work

force size and costs. This example is representative of a work force

whose first-term component contains about 100 airmen. For a first-

term work force of about 1000 airmen, we can change c, say to 87, and

leave the other parameters fixed. The result is a = 302, represent-

ing about 4% "safety stock" over the 291 that would be indicated by

deterministic assumptions.

The situation becomes somewhat more complicated if, realistically,

the retention fraction p is not known precisely--as is the case when

the r 's and p. 's are treated as random--because then the randomm Pim

variable Y does not have a conditional binomial distribution. As

a simple illustration, suppose p assumes the value .75 with

probability .50 and the values .60 and .90 with equal probabilities

of .25. In this case the expected retention rate is still .75, but

its standard deviation is about .11 and its coefficient of variation

about .14. It is fairly straightforward, but tedious, to ascertain

in this case that a = 39 if c = 9 and that a = 367 if c = 87. In both

cases, additional accessions exceed the corresponding deterministically

determined quantities by over 25%.

[n reality tite actual distribution of the value of p is very much

more Complex than the simple one used here. In principle it can be

determined for a subset of tihe work force--e.g., a CP(;--by examining

the distribut ions of its determinants, a set of " 's a 1 i s's. But

in practice this would be very diff c Iut , and the mech0ni cs o an

al gor ithm to perform the kind of ca I lcu I at i,,ns accompI i shed lbove wou Id

be quite complex in the presence of in invo lved d ist r i but ion for p.

Hence, we recommend that such capabilities not be attempted in pe rsont l

flow models. In case "protect ion'" from undesir;ble events is important,

however, it can be obt ained bv adding cost raints to i determinst i, f low

model rin in conjtun t ion with a st ochiast it p,+st-processr. For exaImpl.,
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the deterministic flow model could contain constraints providing lower

limits for the numbers of people of particular types which should

be recruited for each year in the planning horizon. If the results

provided by the deterministic model do not provide the desired

probabilities for particular events--say, reenlistment rates below

specified limits--then the lower limits on accessions could be

increased and the deterministic model rerun. This process could con-

tinue, with constraint values being increased or decreased, until

acceptable probabilities are achieved. These constraint adjustments

could be made either interactively, with program users observing

intermediate results and changing parameter values, or in logical

"loops" which would adjust constraints using specifi, .'es and re-

run the deterministic model and post-processor until the results meet

a priori specifications. We recommend these iterative approaches

because they are analytically simple and computationally practical.

Descriptive personnel flow models typically execute in very short

times, and they can be rerun with different constraints very

economically. Incorporating the necessary probabilistic computa-

tions in the basic flow model itself, while possible in principle,

would add immensely to its complexity and computation time and

would make its initial development and testing much more difficult and

time-consuming.
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4. PREDICTING PERSONNEL FLOW RATES

The flow model described in the previous section, and indeed each

of the flow models in current use by the Air Force, assumes that the

work force is already partitioned into subsets or categories whose re-

tention rates differ. Further, the means (and in our stochastic model,

the variances) of these flow rates are critical inputs to the descrip-

tive models. Of course there are many reasons why it is important to

distinguish personnel categories in flow models -- e.g., behavioral

differences (of primary interest is retention behavior), productivity

differences, cost differences, and availability differences (i.C., dif-

ferences in the numbers of people in the enlistment-eligible popula-

tion with particular attributes and differences in their propensities

for joining the Air Force). In this section we focus on ways to dis-

tinguish categories of people whose behaviors differ and to charac-

terize those differences. These fundamental categories and associated

flow rates will continue to constitute critical inputs for personnel

flow models, whether the models are deterministic or stochastic. In

either case, the identification of the categories and corresponding

rates remains a statistical problem. This section begins with a

description of the important statistical issues relative to this problem

and proceeds with brief discussions of two complementary statistical

modeling approaches we believe will provide the requisite capa-

bilities for handling these issues.

4.1. Statistical Estimation Issues

. Whatever the techniques used to examine retention behavior, we

believe they should meet three important criteria:

o Statiatical accuracy. They should provide accurate predictions

of retention rates, the precision implicit in their estimates

should be characterized, and they should admit to convenient

tests of hypotheses (particularly goodness-of-fit tests).

o Logical consistency. They should provide interpretable rela-

tionships between variables which predict retention rates and
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the corresponding predictions, and their stability should be

assessed (i.e., the regular presence and importance of the

identified characteristics in predicting flow rates).

o Environmental robustness. They should be able to predict re-

tention behavior under altered personnel management policies

such as revised compensation tables, promotion opportunities,

and/or retirement programs.

The primary retention rate estimation technique in current use bv

the Air Force is the Automatic Interaction Detector (AID), a method

which partitions its data sample iteratively using the explanatory

characteristic that provides the maximum decrease in overall mean

squared prediction error. Its users have found this method usually

adequate for predicting overall retention rates, but have noted sub-

stantial errors when subsets of the work force are considered. AID is

employed within a special Air Force information system, the Airman

Loss Probability System (ALPS), to provide flow rate estimates for

numerous personnel planning and programming models. ALPS has the ca-

pabilitv to bypass the AID partitioning/estimating routines for sub-

sets of the work force, and this is frequently done for the first-term

component of the work force. For this component a simple set of pre-

dictive characteristics is input to ALPS and flow rates are calculated

for the corresponding categories. Another estimation procedure involving

trend extrapolation also is used occasionally for first-term retention

prediction.

These e.stimation/prediction procedures have limitations with

respect to all three statistical criteria cited above. They seem

to suffer least from lack of predictive accuracy -- at least in

the aggregate, as already noted -- although problems in this area

have led to recent revisions in the way the AID-identified categories

and corresponding rate estimates are employed. But the system appar-

ently has no capabilities for characterizing the precision implicit in

the rates it identifies or for subjecting them or their underlying

structure to goodness-of-fit tests, although "validation" runs listing

comparisons between predicted and actual retention quantities are made
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regularly. Another structural limitation, at least in the basic AID

logic, is an inability to consider possible time trends in the sample

data. Regarding the logical consistency criterion, we note that the

categories of airmen identified by the AID logic are not always the

same. That is, some predictive characteristics appear to influence

retention behavior more during some time periods and less during others.

In fact this may be characteristic of an observation made by Doyle

and Fenwick [91: Te sequential All) logi( can "find" explanatorv

power (in charac'ter ist iks) where it doesn't exist, and miss it where

it does. A further logic al shortcoming of AID is that it does not

permit systematic study of possible interactions among predictive char-

acteristics. (For example, educational background, mental aptitude,

sex, and race may interact in subtle ways which would contribute to

understanding retention behavior and possibly point toward use-

ful personnel management policy revisions.) Finally, with respect to

the environmental robustness criterion, current methods provide no

real capability to predict retention behavior under revised management

policies.

In the remainder of this section we discuss briefly two improve-

ments which can enhance considerably the Air Force's capabilities for

flow rate estimation: (1) application of log-linear models for be-

havioral category identification and rate estimation, and (2) develop-

ment of a sequential decisionmaking model for prediction of flow rates

under altered management policies. As we will see, use of log-linear

models should provide a sound logical and statistical foundation for

rate estimation in the absence of policy change and should identify

distinct categories of personnel for which the sequential decision-

making models should be employed separately. The sequential decision-

making model can be based on the model developed by Gotz and McCall [11'

for prediction of officer personnel retention.

4.2. Category Identification and Rate Estimation in the

Absence of Policy Change

We propose the use of log-linear models to establish the rela-

tionship between flow rates--e.g., attrition, extension-of-obligation,
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and reenlistment--and various explanatory (predictor categorical

characteristics, such as mentat category, cLducatioria background,

training, job category, history of experience in the work force, etc.

Our purpose is to ensure statistical soundness in inferences being drawn

from the available data and to lay a solid foundation for the development

of a sequential decisionmaking model to be used in predicting behavioral

changes in attrition (and other) rates due to possible changes in Air

Force policy.

To deve lop appropriato Stru ttLr OeS for I low MOdIt IS, wV need to know

what characteristics generallv distinguish p' i-sonnel ',ategories Ind how

those characteristi s inter act . [lu our vijew t le ilmost rLasoln l l ap tou

to identifying and analyzing these characteristics cmpiov, log-linar

models for discrete multivariate data. This method is based on sound

statistical theory, its results submit readily to tests of significance,

arid it pusSS1c2S1 I ri:.hcr ,, : ,? rt Er t ages ncnt iO nCd il lit I 1 C-

irs; hr'it I~ 1 > ll ,, . ,)E iilt' ,1.1 .; ialppro'lch.

1>pi ,ll ,,, il .- 'in,,l ,tlii.-v > , , we ,,vc' .,-ll Set of size ,N, ,ow

each data point falls within one of several categories. For example, in

a study of attrition rates, we may have a group of enlisted airmen cate-

gorized according to characteristics such as marital status, race, mental

category, educational level, skill level, geographical origin, etc. and

according tL whether they stay in or leave the service in the observed

time pell 4 .

.. . . . ' i Is 'lvssi ted by the values oI

!11 , Ct , :. ir-i i i, I ( ti, IrtiA t Ct riSt Cs) labCled A, B, and

C. Assume that

A has I levels (values)

B has J levels (values)

C has K levels (values)

For example, A might represent retention behavior (two values: stay

or leave) during some tim p-eriod, R might reprirsent mental category

(say, usinA the four major values), and C might represent race (three

values: whitc, hl wk, other). Thus there are 2 x 4 x 3 = 24 "elementarv"

cells. Of course, we may also have variables D, E, F, ... , and so on.
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(;enera1 Iv, we art: restr icted to those variables mainta ined in the Uni form

Airman Record (V'AR) for iniformaition on individuals in the Air Force.

11t .1

- rohailit\ of an observation falling in ctoll (Ij,

t*-PL-tttcd count tor ccll (i ik)

'11 wt, (ill to thu Cl aracoerist iL~A and" C, all- to their

'M;oi t! in in I eta~ i., Ci: r i ntcrac tion t.1 iots) . Forrmally1, b%

anaL. anal , os vari bre, , iit

LU.~ ( (j) i(k) + l 2( ij 11+u1

-4 u1

wfieri 0 , var tabltos ni repres,:ent- the linea-r contributios of the various

co-)hinai'r of the characteris tics A, B, and C to the logarithm of

iit !In ETP ii i I t' 11 ne r l o (I S
Lj

Thus, the probabilities of interest are found by computing

Pik= exp +u +..(u + U l(i) + 2(j) +..+u123(ijk) /

anld t hen t Akilu tit he roperT 'MMIMmt i 011.

i.-u r t'xa:mp e , Os ing the dlefinit ions of the three -atcgori es g iven abovo,

'The symbol1 + Use(I asaSIbso.r ipt denotes StiMnat iOn over allIv ie
o t thc cor respond ing index.
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PI- = E I 'k
1)1 + 7k 1j

= Prob (a person chosen at random leaves)

and

PlI j = Plj+/P+j+

= I ~jk' L ijk T

k i k

= Prob (a person with characteristic

j chosen at random leaves).

The u1 2 and other pairwise u-terms are the two-factor effects;

u123 is the three-way interaction term. If the u 1 2 , u 2 3, u1 3 and u123

terms are all zero, the three variables are mutually independent. If

u1 2 3  0 but the others are not, we have all two-way interactions present

but no three-way interaction.

Maximum likelihood is the method employed to fit these models. In

some situations exact closed-form solutions can be obtained. Generally,

however, iterative proportional fitting methods must be employed. Com-

puter programs for this purpose are available.

When the model is saturated (no u-terms are taken as zero), we have

as many parameters to estimate as there are "elementary cells"; otherwise,

we may have far fewer parameters to estimate. The choice of variables

to be included in log-linear models and the examination ol the fit must

be made carefully, since in "near-saturated" models there may be many

u-terms to estimate.

In the initial stages of analyses, it is wise to fit only the sim-

plest of models, models with no more than two-factor interaction effects.

There are several reasons for this.

1. We can obtain cell estimates for every cell in a sparse array:

fitting unsaturated models gives estimates for elementary cL- s that
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have posit iv probabilities but no sample observations. For example, a

particular saample may have no black, female airmen in mental category II

in . certain spciallt.v, and vet the probability of such an occurrence may

not be zeo(,.

2. Models with two-factor effects yield elementary cell estimates

that are mort, stable than observed cell counts. Successively higher-order

terms can bc regarded as deviations from the average value of related

lower-order terms, and so models with the higher-order terms removed are

useful in describing the gross structure of a data array. Such models

describe general trends and hence can be regarded as "smoothing" devices.

3. Simple n)dels facilitate the detection of outliers. The detec-

tion of sporadic cells that are unduly large may be of importance. For

example, it will be desirable to determine which combinations of variable

categories give an excessive number of leavers from the work force.

As an example, one may Find that married personnel with a good

educationa[ background and a high skill level have a higher attrition

rate because of the interaction of these characteristics.

After initially fitting the model with two-factor interactions only,

the model can be extended (if necessary) to include higher-order inter-

action terms. It is also possible that some two-factor interactions could

be dropped from the model. We should always seek to develop as simple a

model as possible that is still consistent with the data, since generally

it is much easier to interpret the parameters of a simple model than of

a more complex one. Additionally, a model with fewer parameters may im-

prove the precision of the parameter estimates.

Log-linear models have the additional capability of using the natural

ordering of categories. In our example, A and C (retention behavior and

race) are not ordered, whereas B (mental category) is naturally ordered.

The natural ordering can be used by assigning ordered scores to the various

levels (values) of the ordered categories (characteristics). This is

useful in reducing the number of general (higher-order) interaction u-terms

and aids in developing understandable, interpretable and effective models.

For example, in a two-way table with variables A (retention behavior) and

B (mental category), a general log-linear model would have the form

logi. u u + uU
1(i) + u2(j) + ul2(ij).

_ _._ __ __j
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However, since B has ordered levels, it may be preferable to examine the

model in which scores vl, v2, v 3, v4 are assigned to mental categories

I, I1, III, and IV, so that

log mi = u + Ul(i) + u2 (j) + (v. - V)u1(i)

where v is the average of the v's. Such a model has fewer parameters to

estimate, and adds only a few extra degrees of freedom to the no-interaction

model.

We may also use log-linear models to analyze dscrete multivariate

data forming a series through time--i.e., a Markov chain. We may wish

to analyze trends in attrition rates as they change over time. Log-

linear models can easily be adapted to this type of problem, whereas

other modes of analysis (such as AID) do not general lv lend themselves

to such an investigation.

Logit regression models are a special type of log-linear model. Bv

treating certain marginal totals as fixed, we may rewrite a log-linear

model for the variables A, B, and C as

log (mlk) w + w2 (j) +w 3 (k) +w 2 3 (jk)

This results from the fact that the conditional probability of attrition

given characteristics (j, k) can be written

p(l j, k) - m
m+j k

Hence,

p(0j, k) = I - p(ljj, k) -mo17

m +jk
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and

log Q i Jk) .log jk
p(O j k) \mOjk1

= log mljk - log m j k .

We may use logit regression models where the explanatory variables

are continuous and/or discrete. Further, we may relate attrition rates

to various economic variables such as inflation rates, the cost of living

index, joblessness, etc., to develop a model of attrition rates dependent

on both personal variables (in the UAR) and economic indexes varying over

time.

Additionally, it should be noted that log-linear models and logit

regression models can be extended so that the dependent variable A is

multinomial (or polytomous)--i.e., A may have more than two outcomes,

such as leave, extend or reenlist.

In all the above models, careful attention must be paid to the

analysis of residuals and various "goodness-of-fit" criteria to detect

any serious model inadequacy. Well-established methods exist for ex-

amining the fit of log-linear models to actual data. Al ternat iv

methods, like AID, generally ignore the question of model fit; they

provide simple, untested point estimates.

4.3. Behavioral Response to Policy Changes

As mentioned above, log-linear models include logit regression

models as a special case, and ligit models commonly have been used to

estimate stay/leave behavioral alteration in response to policy or

environmental change. However, logit models do not implicitly rep-

resent decisionmaking by individual airmen.

Airmen's decisions occur primarily near reenlistment points, and

these decisions are subject to some influence through personnel manage-

ment policies such as bonus levels and promotion rates. Gotz and

McCall [11 ] have developed a sequential decisionmaking model of
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,tay/ eave behavior for Air :or,.e offiCe [S wh itch (It f ers two kt,

advant tages over al ternat ire i,-tciit ionl rate ' Cst ialll;t Ion pro Idt ires

o ilistorv dependence. The dynamic programming model of (otz and

McCall demonstrates that retention rates of Air Force officers

lopend both on prospective future finanCia returns to remaining

in the military and on past occurrences. Their analysis shows,

for example, thit.t ordinary regression modeIs can overpredict

retention rates for years beyond the offer of a bonus. These

models igore the fact that some individuals may have stayed in

service only to obtain the bonus; hence, their post-bonus

retention rates should be expected to be lower. The important

extension in the Gotz-McCall model which allows such behavior

to be predicted is explicit incorporation of a term representing

permanent differences in individuals' tastes for the military.

(Of course the distribution of th,, t istes must be estimated

empirically.)

Structure which incorporates managemekit policies directly.

Personnel pol ic ies affect ing individuals' income streams

(i.e., expected military versus civilian incomes with

differences depending on compensation tables, promotion

opportunities, retirement pay, and other financial benefits)

are represented explicitly in the underlying sequential

decisionmaking model.

We believe this sequential modeling concept should be developed

further and generalized for application to enlisted retention modeling.

Key differences between the Gotz-McCall model and the sequential model

for enlisted personnel may include:

o Multiple years between decision points. Although every year

of service sees some airmen leave the Air Force--e.g., due to

health problems, personal emergencies, or unsatisfactory

behavior or job performance--most airmen face continuation

decisions at four-year intervals, the usual enlistment or

reenlistment obligation. This contrasts with an officer's more
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frequent opportunities to make stay/leave decisions, and it

necessitates structural differences in a sequential model

representing enlisted personnel decisionmaking.

Extension of obligation beyond normal enlistment terms. Near

the end of an enlistment term, an airman judged by

the Air Force to be acceptable for continued service has a

third option in addition to reenlisting or separating: ex-

tension. That is, the airman can extend his or her current

term of service somewhat and delay the stay/leave decision.

This option needs explicit representation in a behavioral

model based on decisionmaking timing and options for enlisted

personnel.

o Transient differences in "taste" for the military. Enlisted

people typically enter the service much younger, less educated,

less experienced, and with less forethought than officer per-

sonnel. Hence they cannot be expected to have as stable an

affinity for the Air Force. Their impressions of service life

may be much more influenced by their induction, training,

assignment, and initial work experiences than are those of

officers. The Air Force is often the first full-time,

long-term job for enlisted people, and they really don't know

what to expect either from their employer or from themselves

in their newfound responsibilities and independence. Thus,

the "taste" term to be employed in a sequential decisionmaking

model of their behavior may need to be generalized so that, at

least during the early years of service, it can follow different

distributions. Alternatively, the annual "disturbance" factor

represented in the Got,-McCall approach might be allowed to

play a larger role until airmen have sufficient time and experi-

ence to stabilize their impressions of military life.

o Crosstraining. In contrast to officers, enlisted personnel

receive virtually all of their job-related training directly

from the Air Force; essentially they are "given" occupations

by their employer. Sometimes, when occupations become over-,
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manned, a condition for continued employment can be that an

individual must change occupations. 11is usually necessitates

a period of crosstraining, whether formal or informal , and

can result in changed working conditions, a different set of

possible assignment locations, altered advancement potential,

different opportunities in civilian life, etc. Such a change

is usually more drastic and may be less expected than corre-

sponding changes experienced by officer personnel; hence it

may need explicit representation in an enlisted decisionmaking

model.

The kek I inkages between the Io g-I i na r modelI Ig Ipp rIach,

which t 'ocuses on i(ent it i cat ion Ot caItegOl-i0', Of l 5CI> 01flill WhOse'

retention behaviors differ, and the sequential decisi onmaking

modeling approach, which focuses on how behavior will chaiun ;, uldt I

altered management policies, are the representations of tstes ior

the military and of transient dis turbanccs affecting continuat ion

decisions. We expect that the same general model structure can permit

estimation of personnel flow rate changes under aItered policies

regardless of behavioral category, but the different categories will

require different model parameters. Thus, the modt ing approalches

are complementary: the log-I inealr mo1del vruvit(e.s n111 init ial

"filter" to separate and identify behaviorally dist inct categories

of personnel, and the sequential decisionmaking nmdt I pred its

how each category's retention behavior will change if management

policies are changed.
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5. CONCLUS IONS AND RECOMENDATIONS

We have ascertained that projections for many work force character-

istics can incorporate sizeable uncertainties: "two-sigma" confidence

intervals often contain values differing 10'-40 from corresponding ex-

pectations. Thus, especially when smaller segments of the work force

are considered, substantial deviations from expected-value projections

should be expected fairly frequently. From our very limited computa-

tional experience, it appears that the largest contributor to this un-

certainty is usually the simple uncertainty in individual stay/leave

behavior (regardless of whether the individual or the Air Force makes

the determination). Another potentially large contributor is uncer-

tainty in the proportion of accession requirements which actually can be

met. Uncertainties regarding the mix of people that can be accessed

and regarding estimates of flow rates, while they can be imnortant in

projecting values for certain subsets of the work force (e.,., the nTUn-

ber of minority, male, and high-school graduates in i particular (11C

who will be eligible for reenlistment five years hen(e), appear to

contribute less to uncertainty in overall work force characteristic.

(e.g., the total number of people in a CPN; who will be eligibl for

reenlistment five years hence).

While we see that uncertainties can he substantial, we find that

one of our original concerns, the "nonlinearity of expectations" problem,

is not too important. That is, at least for the limited (but representa-

tive) parameter values we haqe employed, the nonlinear equations which

relate descriptive random variables (the random variables representing

enlisted work force characteristics such ;ist'I'ccss lOis, att.rit ion, ren-

listments, and costs) also hold approximately when the random variables

are replaced by their expectations. Thus we can expect deterministic

personnel flow models, which typically employ the best availahole tsti-

mates of expected values within systems of nonlinear equations, to vield

fairly accurate predictions of the remainin,, expectations. Hence, as

long as our primary interests are in expected values, we netdn't make,

the substantial extra effort to develop models which include uncertaintv

explicitly.
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When our interests shift to risk aversion, things get much more

complicated. Since we have not evaluated the entire distribution of

the work force "state," we cannot make precise statements about the

probabilities for joint events (e.g., of needing reenlistment rates

no higher than 40% in 1981-1984). But this work does enable us to

determine the approximate probabilities of individual events (e.g.,

the probability that a reenlistment rate no higher than 40% will be

required in 1983 or the probability that accessions in 1982 need not

exceed 250 people in a particular CPG). These approximations are ob-

tained by employing the calculated means and variances of the corre-

sponding random variables to estimate the parameters of a specified

probability distribution, usually the normal distribution. Since these

means and variances are determined in the course of the model's exe-

cution, it is a simple matter to determine the approximate probabilities

upon run completion. But if execution is to be affected by limits on

these probabilities (e.g., access enough people in 1982 to provide 90%

confidence that in 1986 a reenlistment rate no higher than, say, 40%

will be required to provide some fixed number of career entrants within E

a CPG), the ongoing calculations become exceedingly complex.

Thus we recommend that personnel flow models not be encumbered

with these intricate calculations during their basic operations; i.e.,

they should continue to be constructed as deterministic. However,

uncertainty can be significant enough that we recommend that such

models have appended stochastic "post-processors" which evaluate asso-

ciated means, variances, and approximate event probabilities using the

methods we have developed here. This will provide ready assessments of

the extent of uncertainty in model projections. Further, if risk aver-

sion is important, such post-processors can be employed to identify con-

straints which should be incorporated in the deterministic flow models.

This could be accomplished either interactively, involving personnel

policy analysts in changing inputs and exercising the flow models itera-

tively, or directly, by specifying in advance desired probabilities for

certain events and imbedding the flow models in "logical loops" which

would alter and rerun them until acceptable results are achieved.
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Regarding the stochastic inputs necessary for personnel flow models

(e.g., upgrade, reen.list- t, and loss rates), we believe improved

estimation procedures should be developed. These methods should provide

consistent, interpretable, and parsimonious sets of parameters for esti-

mating flow rates, th: v should incorporate time series data (in order to

detect and projOct underlying trends), they should include "environmental"

data such as occupational categories and corresponding civilian economic

conditions, and they should admit to statistical goodness-of-fit pro-

cedurcs so that their accuracy can be assessed systematically. Uncer-

Lainty in these rlte estimates is particularly important since, as we

have steen, it can contribute significantlv to uncertainty in related work

torC characteristics. We reconmmend that the first step in investigating

t Lh s, flow rates be to emploV log-linear mode]s (with log it models as a

special case) to identify categories of enlisted personnel whose flow

behaviors differ--e.g., subd iv id ini the work forue according to occupa-

tional subsets, educational hackgrounds, mPental aptitudes, marital

status, etc., as appropriate. The second step should be to develop a

sequential decisiotinakii-, model which will predict how the flow

behaviors for the various categories of personnel will change if manage-

ment "control" policies such as compensation, promotion opportunity, edu-

cational benefits, or retirement programs are changed. These estimates

of revised behavior under altered policies are obviously crucial if flow

models are to be useful in evaluating and/or selecting improved personnel

management policies. This step also should result in estimates of flow

rates and their inherent uncertainty, again because of the potential im-

portance of this uncertainty when the flow rates are employed in des-

criptive flow models.

We are convinced that substantially improved personnel flow models

can be developed 'or Air Force use in developing and evaluating alter-

native personnel management policies--especially if smaller segments of

the work force are to be examined (1) simttlti ;uouslv with the total work

force and (2) dynamicallv. Ideally, thee node Is woul I be const ructed to

achieve directed results, for example, by using optimization techniques

to pursue user-determined objectives. We have concluded that those

models should be developed as deterministic flow models; but tmtertaintv is
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sufficiently important that such models should include stochiastic post-

processors to evaluate the degree of uncertainty implicit in identified

results. In addition, careful attention must be given to estimation of

important flow rates which ordinarily are model inputs--particularly to

altered flow rates which may apply under different management policies

and to the categories of personnel for which these behaviors apply.

I
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AppfCldix A

DEVELOPMENT OF THE STOCHASTIC FLOW MODEL

A.l. Introduction

This appendix gives a detailed description of the stochastic

(dyna nic) flow !n1odel. As described in Section 3.1, the inputs to

the model are:

o N m(0), the initial number of people in YOS i and

category m

o Fixed force size, N

o The retention rates pim= probability that a person

in class (i,m) (YOS i, category m) will flow into

class (i + 1, m) in the next time period. Thus,

1-pim are the attrition rates. (The retention

rates may depend on time t; i.e., the model

considers the values pim(t)).

o Accession mix T* M"

o Costs, C. (t)

o Planning horizon, T.

Since each individual in class (i,m) stays in the

service with probability p im, it is clear that



N (t + 1) =number of individuals in Y03 i + 1,
i +1,m

class m in year t + 1

im

where X1 . X 2 ' "' are independent and identically distributed

Bernoulli random variables with probability of success p.im; i.e.,

P (XX = 1) =1 - P (X X = 0 m

The flow of people through the T.qork force can be illustrated

as follows:

YOS=l 2 3 4

TimeItN Im(t) N 2m t) N 3m(t) N 4m(t)

Tie tlm N2m N3m t)4m

t + 1 N (1M 1 N(t+l) N (t+l) N3m4 (t-~-)

In our model it is convenient to assume the process starts

at t i Rie t - 0 ;Illd (lilt i I t = I' (rile 1 i it v" !w F 11sn i

values of N im(0) are given (fixed), and the process is allowed

to evolve.
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Fundamental questions to which we require answers are:

1. How do we compute E (N (t) I N (t-l)),
im

the conditional expectation of N (t)
im

given the values

N t-1) N (- ): 1 . .. .4, 1 M ?

2. How do we compute Coy [Nim(t), N (t) I N(t-l)],

the conditional covariance?

3. How do we then compute ENim(t) and Coy [N im(t), N j(t)],

the unconditional means and covariances?

4. Are there closed-form analytic solutions to the above

questions, or must we perform simulation runs (Monte

Carlo runs) to obtain the answers?

5. What happens when T - - ? Is there a long-run,

steady-state (equilibrium) distribution for

{N im(t)} ? If so, can it be characterized?

In answer to the fourth question, if the p im s and rmvs are

fixed parameters (not random), then we can obtain _ implIc analtic

expressions for the above-mentioned quantities. If, however,

either the pim s or the r m's are treated as random, then we must

perform simulation runs to obtain the answers--repeatedly sampling

from the distribution of the p im's and the Tm 's.

Since the i's may be fixed (hence the proportional orm

multinomial model) or random, the pim s may be fixed or random,

and the Cim(t)'s mav be fixed or random, there are essentialy
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3 x 2 x 2 12 different cases that can be treated. We treat

here only the 3 most interesting cases:

1. p and r fixed, - proportional, C random

2. p and -fixed, multinomial, C random

3. p and - random, - multinomial, C random

The first three of the above questions are answered in Section A.2.

Section A.3 di; '.usses the modeling of parameter uncertainty, and

Sections A.4 and A.5 discuss incorporation of parameter uncertainty in

the flow model (as well as the answer to the fourth question). Section

A.6 derives approximations to the mean and variance of reenlistment

rates, and the last section answers the fi h question concernin2 the

existence of a long-run, steady-state distribution for the flow model.

A.2. Dynamic Equations for the Means and CovariancL,- of Svst em State

Contents

In this section, we develop expressions to compute iteratively the

means and covariances of N. (t+l) as functions of N. (t); i.e., we

compute the conditional means and covariances

E (Nim(t+l) I N (t))

Coy [Nim (t+l), Nj;(t+l) ! N (t)]

where N (t) = (Ni (t)). We also develop the unconditional means and
im

covariances at time t + I as functions of the unconditional means and
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covariances at time t. Hence, if the process starts at the initial

values N. = N. (0) at time t = 0, we can trace its evolution as t
i m iIII

grows.

Up until now, we have assumed that the accession mix 7 and the

transition probabilities p = (p. ) do not depend on t. However, to
in

remind ourselves that a change in policy or behavior at time t can

affect both and p, wt show the dependence of 7 and p on t by writin:

(t) = M(t)) and p(t) = (pim(t)).

Throughout this st-ction, neither r(t) nor p(t) is random.

We develop these results for two importantl" different cases:

in the first case thiL wo rk t oerLe Size is held constant at N , in1 the

second it is allowed to lall below N (i.e., the possibility of recruiting

shortfalls is introduced). We will treat both the fixed proportional

case and the multi mmial case for 7 (t).

A.2.1. Fixed Work Force Size

First, to obtain the conditional means and covariances, let .

L(t) = N - ", 71 Nil(t) = number of accessions required for the planning
j>2

year t.

(i). Fixed proportional case. We have Nlm(t) = rm(t)L, so

E(Nim(t) I L) = iT (t)L and Var (Nm(t) I L) = 0.

(ii). Multinomial case. (;iven I,, the vector (N (t) .... N I M(t))

has a multinomial distribut ion, i.e., (Nil(t) N.... 1M(t))

i(L, 1I(t),..., 1M(t)). Hence, E (Nl(t) f L) = m(t) L as before, but

Var (N (t) I L) = r (t)( m t)) L

and

Coy (Nim(t), NlZ (t) I L) = -7T m(t) r (t) L
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To keep the notation consistent, we assume that the transition

Nj(t)+Nj+IA(t+l) is determined by pi9 (t), ant the distribution of

(N11 (t+l),..., NiM(t+l))is determined by ir (t). In our derivation,

we make extensive use of the fact that, given N(t),

N im(t)

Ni+l,m(t+l) = X

where XX are independent, identically distributed (i.i.d.), having a

binomial distribution with parameters 1 and Pim(t).

a. The Conditional Means. For t>0 and l<i<3, i.e., for the cate-

gories of continving personnel, we have

Nim(t)

E(N i+lm(t+l) I N(t)) E ( E XX I N(t))
X=l~

p Pim (t) N im (t).

The conditional means for the accession categcries are the same

whether we consider the fixed proportion or the multinomial case.

We have

E(Nm(t+l) N(t)) = iT(t) E (L(t+l) I N(t))

= 71(t) [N - S E E(N (t+l) N(t))]

= lm(t) N- N hi-lt)N
J>_2 X -

b. The Conditional Covariances. For the continuing categories of

personnel, again for 1 < i < 3 and t 0 0, we lave
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N Nm(t)

Var (N i+lM(t+1) N(t)) = Var E XX I N(t))
A=i

SPim(t) [1-P im (t)] Nim(t)

The variances of the accession quantities N (t) depend on whether

we treat the fixed proportion or the multinomial case. For brevity we

treat the two cases simultaneously. The difference is that an extra term

enters in the multinomial case; we handle this by introducing the indicator

variable I as follows:

I +1 if in multinomial case

I 0 if in fixed proportion case

We then have (for the first equation, see DeGroot [8 )),

Vat (Nlm(t+1) [N(t)) = Var (E(Nlm (t+1) I L(t+l), N(t)) j N(t))

+ E(Var(N m(t+l) I L(t+l), N(t))f N(t))

Var (7 (t) L(t+l) I N(t))
m~

+ I E(T (t)[l-T (t))L(t+l) N(t))

T 2 (t) Var (N- Z Z N (t+l) N(t))
j>2 R

+ (t) [ lm (t)] {N - t) N (t)

j>2 k P t)

2
mt) E Var(Nj (t+l) I N(t))

+ Im m J>2 Z
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because, as we show below, if (j,Z) # (k,n) and j-2, k'2 then

Cov(Njt(t+l), N (t+l) I N(t)) = 0. The equation continues as
ji kn

2
Var (Nm (t+l) N(t)) = (t) E E (t) [ (t)] N (t1M J>2 Z Pj-I,z -j-I,z Nj-I,

+ (N• m (t) [ - { - (t)] N{N E(t)

m j>2 j ,i

To obtain the covariances, we first consider the cases where (i,m) # (j,P)

and i > 2, j > 2. Then if {X are i.i.d. b(l,p. (t)) and {X '1 are i.i.d.
im i

b(l, p j(t)), " and if {X J and {X 'J are independent systems, we get

Cov(Ni(t+l), N. (t+l) I N(t))

N -~ (t) N_, (t)

= Cov( E Xx, E X' N(t))
X=I= -

0, since Xx, X' are independent.

Now, In case i - 1 and j 1 2, we havef

Cov(Nl(t+l), N (t+l) I N(t))
lmji

= E [CoV(Nl (t+l), N. (t+l) I N. (t+l), N(t)) N(t)]

t
That is, the random variables are independent and identically

distributed (i.i.d.), having a binomial distribution with parameters

n - 1 and probability of success pj 1 (t).

4 See De Groot 18] for the relevant conditional result which

says that for random variables X, Y and Z,

Cov(X,Y) - E[Cov(X,YIZ)] + Cov[E(XIZ), E(YIZ)I.
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+ coy [E(Nim(t+l) N, (t+1), N(t)), E(N (t+1)

=0 + Coy I lm (t) E(L(t+1) IN. (t+1) , N(t)), N jz(t+1) IN(t)]

m k>2,n k-1,n k-1,n Zk

- f ~(t) Va r(N (9 t+l) I N(t))

In case i j =1 and m 4 , we have

Cov (N lm(t+1), N ii (t+1) I N (0)

= E [Cov(Ni (t+1), N1 (t+l) IL(t+1), N(t)) IN(t)]

+ Cov[E(N (t+1) I L(t+1), N(t)), E(N (t+1)IL(t+1), N(t))IN(t)]
lm

= I -E(-r m(0 t r ITRt) L(t+1) I N(t))

m z

I Co( t) L1(t), E(Lt) I~+ N(t))

+ ITm (t) Tr2 (t) Var(L(t+1) I N(t))
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7r -I r(t) Tr t(t) f E E p (t) N ()

+ Tr m(t) TIZ (t) { E E -1, (t) 11-il (t) I N Wt)

In summary, if we let a(t) =N - E m~ 1 (t) Nkl (t)
k>2 n

= E{L(t+1) JN(t)"

and

= VarjLt+l) IN(t)],

then for i > 2, j > 2, m ~9

E(N. (t+l) N(t)) = p (t) N (t)

E(N I1 (t41) JN(t)) = iTr (t) a(t)

Var(N (t+1) IN(t)) I i(t) [1 r (t) a(t) + ir
2 (t) b(t)

Cov(N (t+l), N (t+l) IN(t)) = 0
im ji

Gov(N (t+l), N (t+l) IN(t)) = - iT (t) .1) (t) [1-p () N )

im 'jz m j- , j1,

Cov(N (t+l), N~ (t+l) N(t)) T n(t) r 9 (t) f-I a(t) + b(t))
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Thus the only differences between the fixed proportion case and the

multinomial case are the variances and covariances involving the first

year of service.

c. The Unconditional Means and Covariances. Next, we derive the

unconditional means and covariances of N(t + 1) as functions of the

means and covariances of N(t) . From the preceding equations, we have

E(N im(t+l))= P ilnm ( t ) E(NEiNlkmW)

E(Nim (t+l))= Trm (t) {N -k2 ZZ pkl,n (t) E(N kI, n ( 0) )
mk>2 n

Var Nim(t+l) E [Var(Nim (t+l) N (0)) + Vat [E(Nim (t+1) N(t)))

P il,m(t) [l-Pi.lim(t)] E N 1 1 l(t) + pI-l,m (t) Var Ni (t)

Var N1 (t+l) = E [Var(Nm(t+1) WN(t)) + Var [E(Nl (t+1) I N(t))J

I 7MPt) [1-7m (t)) {N - Z k-l,n(t) E Nk.l (t)}m m k>2 n

+ E2 (t) { p X Pkl~(t) [l-P (t)] E N (t)}
m k>2 n k-1,n k- 1,n

+ I(t) P (t) p (t) CoV(N (t), N. (t))
m k>2 n,k

J>2

To compute the unconditional covariances, we again use the fact that

Cov(X,Y) = E[Cov(X,YJZ)] + CovIE(XIZ), E(YIZ)] to obtain:

tFor a random variable X, we use the notation EX or E(X) for the mean

and Var X or Var(X) for the variance.

L. -
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Coy (N (t+l) N -t+l) = (t) pj, (t) Cuv(Nil() _
im Nj(tl) -l ni ,t),

Coy (N (t+l) N (t+l)) = -, (t) Pj (t [1-p (t)] F NH (t)
lm ' i m j j-1" .

-Tm t ) P j -l ,i ( t k 2 n' P k - 1 n t )  C o % ( N k - I n ( t ) ' N -1 (- t ) )

Coy (N (t+l), Nl (t+l)) r (t) -,(t) -L IN- pk-1 (t) E Nk(l nk>2 k-2 n k-II

(t F N (t),k> Pnk-l,n t [1 -k l,n Nk-l, n

+ m (t) (t0 E E 1 'k-i (t)(oV(NK_1 (t)
k>2 n,J7'2

Nj l,(t))

A.2.2. Random Work Force Size

Until now, we have assumed that we may recruit is many p ople as

necessary to keep the total size constant. We now assume that thereC

may be shortfalls, so that the recruiting quota is 11ot alwaV. met.

Specifically, in our earlier notation, if we need to recruit a

total of

1. - L(t + 1) = N - " > N (t + 1)

recruits, to keep the force size at N, we assumein thit tith ictual number

1, ot people ree ru ited is. a random variable whose di'ttV-i hutio1 depends
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on 1.. To introduce this type of uncert;int y, we sa I l assume that both

tie mean and variance are l inear functions of I.; i.e.,

F * L) = ) condit ional mean

I.= Va r(l 1, L) = c ond it ionalI va r ia n ce.

For , ampl c, it tlhe di str ibt t on of L . , iven 1. i. 1inomial witil

paiameters- I, and q , written (I IL) b(l., q) , then t = q and

1 ( q) . = = L , c - and we recrui

is manV as arc needed

We all Iassume that p and TT are nonrandom, and that we have

tht. ImltlltinomiaI vASe 1- or Iacce.ss ion s. Note that, g.iven L , the dis-

tribution ot N 1 (t + 1) ... , ( + 1) is1 .(L .' .M )

that is, mul t inonial with parameters l and' ,%s belore,

we firsL obtain the condit ima l means and covari ancs, and tlclO thy

tincond i t ioa I lmelns and coVri 1cs.

a. The Condi t ional "leans. For I i - I nd t o , w" !,I% c

for the categories of cont inuli o personnel

E'(N +~ (t + 1) 1 N(t)) = 'm t N. (L)

lu r the :lc c eso i t eat egor i s , we have

E (Nl t + I N r) E' (E (N m( t + I I. ;t) N~ )
im I m

: E I'(E Nl~ t + I) 1 , I., N (t ) I., N t) L N t )

the t ihxtd p-u po) rt ()11,11 c' joI '' o r ac cesions can cm a I bhe cls4 '
treated.
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= E(E(r (t) 1. * L, N(t)) iN(t)
M

= E(7, (t) E(L L) N(t))
Ill

= ,(t) E(,x L N(O))
in

(t) - (t) Nt)

b. The Conditional Covariances. For the continuing categuri ts c

personnel, again for 1 <_i 3 and t -0 , we have

Var(N (t + 1) N(t)) p (t) Ii . t t.
i+l,m im - im t  1r

For the variances of the accession quantities, we obtain

Var(N (t + 1) 1 N(t)) = Var[E(N (t + 1) 1,, N(t ) N

+ E[Var(N m(t + I) L, Nit)

= Var[E(E(N (t + 1) L , L, N(t)) L, N(t) I 't
lm

+ E{E(Var(N (t + 1) L , L, N(t)) L, N(t
In

4+ Var(E(N (t + 1) I, N, Nt(t) N t
lm

= Var[E(7 (t) L*IL, N(t)) IN(t) I

m*

m m

+ Var(T! (t) 1, L, N(t)) I N(t)
m
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Var!" (t) 1. N( )
in

+ E i: (t) I I (t) 1 , + ' (t) 1- N N t)

in

= .(t) r: Var [L N(t) ]

+ t .t) + (t E (1 t

= t) rx +: t: pj ,,tt N1 i ] '( ; _ ,

m ' 'j-I ,

To obtain the covariance, we f irst cons ider the cases where

(i, m) # (j, ) and i 2, 2

Cov(N. (t + 1), N. (t + 1) N(t)= 0
im -]

Now, if i = 1 and j > 2 , we have

Cov(N (t + 1), N. (t + 1) (t)
Nlm

ECo [E(N (t + 1) N. (t + 1), N(t))

= Cov [ t) F .( N ( + 1) N (t) , N (t I t) N(t)

(t)
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j Il i Il ,L
In cast- i =}=] and m #,, wte Nu t

Ov (N L + 1), N1 (t + 1) N( t)

Coy [E (N (t + 1) . *N t)), K(N (L + ) L, N(t))

+ E ICv (N m (t + 1), N (t + 1) 1 , (t ) t

= Cov [li (t) L, (t) L N(tm

+ E L(Cov(N (t + 1), N, It + 1) 1 ,, Ntti) , 'Uti

+ Cov (E (N lm( t + I) I. , t., E()) F ( !  (t + 1 I ,i, t

. N(t)) N t)

4 = ITm(t) It) a2 Var(L N(t))

+ E {E(-R (t) p (t) L* L, N(t))

+ Cov(r (t) L , i(t) L I L, N(t) N(t))}
m z -

= 7Tm(t) I k(t) (.2  Var(L I N(t))

+ E {- Tr (t) TT (t) a L + iT (t) TT (t) 6 L IN(t)m m "

= fm (t) T £(t) cL2 E E pj-l,£(t) [1 - PJi£(t)] NjI, (t)
J>2 Z

+ rm (t) rk(t) ( a - ) {N - E Pi 1 9(t) N i(t)}
jZ2 > 2



In summary, if a(t) and b(t) represent the (ccnditional on N(t)) mean

and variance of the number of recruits required in year t+l to achieve

the target end-strength of N--i.e., if

a(t) = N - k-l,n(t) Nk-l,n(t)

k>2 n

b(t) = Z E pk-in (t) [1 - Pk-in(t)] Nk-l,n(t)

k>2 n

then for i > 2, j > 2, and n 9-

E(N. (t + 1) I N(t)) = p (t) N (t)
i-1, i-1,m

E(N m(t + 1) N(t)) = im(t) a a(t)

Var (N. (t + 1) [ N(t)) = P 1 1 (t) [1 - pi (t)] Ni (t)

2
Var(N (t + 1) N(t)) = 7 2 (t) a b(t)

lm m

+ {T (t) [i - m(t)] a + 7r
2 (t) 6} '(t)

Cov(N. (t + 1), N. (t + 1) N(t)) = 0
im j

Cov(N m (t + 1), N, (t + 1) N(t)) =  
-7 (t) p. (t)I m 1,

S- P-1,((t)] N(0, (t)

Cov(Nm (t + I), N (t + 1) N(t)) r m(tI (t) 1 b(t)

+ -Q ( mt) 7 (t a (t
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c The Unconditional Means. For I i 3 and t 0

we have

E N. (t + 1) = p. (t) E N. (t)

For the case i = 1 and t > 0

E N (t + 1) = t){(t) N - (t) F N. (t)

m~ +) j>2

d. The Unconditional Covariances. For the ,ontinuinc,, u-ateorius

of personnel, again for 1 < i 3 and t 0 , we have

Var(N. (t + 1)) E(Var(N. (t + 1) N(t)))

+ Var(E(Ni (t + 1) N(t)))

= ' Pil,mn(t) I 1 - Pl,nm(t)J iE Ni~lrn(t)

+ p 1lm(t) Var N (t)

For the accession quantities,

Var N im(t + 1) E(Var(Nlm(t + 1) ! N(t)))

+ Var(E(N m(t + 1) N(t)))

71"(t )  : E b (t) + t' (t) 1 - : (t l x + :: t) Fa (Lt

m a a

+ (t) 12 Var a(t)
m

Inn



-73-

'1' obtain cuvariances, first assume ( i, m) I i )and i 2 2

Then

Cov(N. (t + 1), N. (t + 1)) = E(Cov(N. (t + 1), N. (t + 1) N(t)))
in) p. in

+ Cov(E(N. (t + 1) 1N (t)) E(N. (t + 1) N ( t)

o ± +Cov(p. i-~ (t) N i-~(t), p. 1l((t) N. . (W)

i-l'm 1- , - , - ,

If j I and j -_ 2 , we have

Cov(N (t + 1), N (t + 1)) E(Cov(N (t + 1), N (t + 1) N(t)))
In 1M in

+ Cov(E(N. (t + 1) 1 N(t)), E(N. Ct + 1) N(t)))

-, t)a p. ~ (t) [ 1 j-1 . (t)]I EN t)

+ a m f , t) ova(t), N (t)N W)

(t) D. _ t i p (]E t

Finally, for i j 1 and M n

Cov(N (t + 1), N (t + 1) 1N(t)) = E (Cov(N in +1, t+1) Nt)

+ Cov(E(N (t + l) N(t)), E(N (t + 1) N(t)))

7T(t ) 7- Lt [ 2 Fb (t) + (f F a(t)

+ Cov (TT (t) (za a(t) , Tt (t) (x a(t))
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S'(t ) [, (t) (r: E, b(t) + (t-:- * ) t*: a(t)j

m (t) 1 ( ) t) Vr a
+

A. 3. Modeling ot Parameter Uncertainty'

Recall that the retention rates (pim (t)) and the accession mix

mi
fractions (7 m (t)) are inputs. To consider uncertainty in these param-

eters in our analysis, we have ignored the possibility of their time

dependence and supposed they have been estimated from actual data--as

would be the case if the AID techniques were employed. Thus the esti-

mate pim of pim is treated as a normal random variable witn mean pim

and variance pim (l-Pim)/n im, where n im is the number of individuals

in YOS i and category m whose stay/leave behavior is observed in the

sample. Although 0 < pm< 1, we are assuming that n. m is sufficiently

large so that the normal distribution approximates the binomial distri-

bution adequately.

To model uncertainty in the 7r 's, we will require that E = 1.
m m

^m

Since each "estimate" ir is also required to lie in the interval 10,11,m

a useful probability distribution to model the joint distribution of

(IT .... ,M ) is the Dirichlet distribution. (See De (;root 181.)

If alp....M (all nonnegative) denote the parameters of this distri-

bution, its density is defined by

r (C ) a -iM-
0 1

f(x1 ""'XM) - M x ... a

( m )
m= 1

Atitom;itic Interaction Detector, the primary statistical approach used

by the Air Force for discerning behavioral categories and estimating
corresponding flow rates.
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o0 and xl,...,xM are all nonnegative, and E xm 1.

wn m

Moreover, if (X1,...,XM) have a Dirichlet distribution, then it can

be shown that

EX = a /a
m M o

am(cio-a )

Var X -m (
m 2a (ao+1)

0 0

Coy (Xmt XL M U i i

aL (a- +l)
0

For convenience in our computer pro'ram, we chose (nm) such that
I lm

n 1 / 1 Tim for each m, and let a = n 1 . (This gives estimates

for the Dirichlet distribution parameters consistent with those ob-

tained from using the most recent year's observed accession mix as

data.) Consequently, (11,..., M has a Dirichlet distribution with

E Ti7 n /Zn
m m lmk 1k

Var (nm)^ nlm(j nlk-nlm)
m (n

(n )2 (Z n +1)
k 1k k 1k

m m

E n +1
k 1k

1m (1-T

Yn
k n k
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n Imn
Cov (Im, ) (E nl)(E n l

k k lk+)

mi

E n lk+l
k

k 1k

Thus the first and second moments of ('''''7) are approxi-

mately those of estimators of the parameters of a multinomial

distribution, with sample size E. nlk

k
The above approach provides an approximate fee' for the order

of magnitude of the variance of the p m s and the r1 's if they are

estimated cross-sectionally using a recent work force of size N.

A.4. Incorporating Parameter Uncertainty in the Flow Model

Section A.2 described the formulas used to obtain E N. (t) and
Im

Coy (NiW(t), K (t)) for fixed values of pi and r . Now we denote

these quantities by

E(N im(t)lp, n) and Cov (N im(t), N j(t)Ip, 7)

to indicate their dependence on p and 7. Since there is uncertainty

associated with estimating the true values of p and 7, both the

means and the covariances vary depending on the estimated values of

p and ir.
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T7he mean E N im(t) is obtained by averaging E(N im(t) p, ri) over the

distribution of p and it; i.e.,

E N im(t) = E[E(N. i(t)Ip, it)]

and Coy (N im(t), N .Q,(t)) is obtained from:

Var(N im (t)) = E[jVar(N i (t)Ip, -01) + VarIjE(N i (t01p, -0I

Cov[N t),N. (t)] E (Co)vj (t), N W~t jP, )
im (t im ji

+ Cov[E(Nin(t)h), ii), E (N.( 1(tp, 701

These quantities are nonlinear functions of p and it, so it is dif-

ficult to obtain (even approximate) analytical expressions for these quan-

tities, based on the distributions of p and it. To evaluate these (and

other) quantities of interest, we employ Monte Carlo simulations using

the distributions of p and ii. We generally performed 400 replications

in our simulations.

A.5. A Brief Look at Cost Uncertaiji~y

Our model assumnes that the cost C. ()W associatedi with each

individual in t class (i , in) in year t is a]lso random. Trhe t otal

(random) cost f-or t he work force in calendar year t is

c~~t) C im ()NiT

(;i yen N (t) , the (cond itijonal ) expected cost for year t is

i im

I'M. -
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and the (conditional) variance is

mm in in

E N. (tN (tCov[C. (t) , C, (0)].
'mjjmQ in in

Hence the unconditional expected cost is

EC(t) = Z EC. (t) EN. Wt
m i im

and the unconditional variance is

Var C(t) E[Var(C(t) IN(t)) I + Var[E(C(t) IN(t)) I

EE(N.i (t)N jk(t))CovLC i(t). j~ )

+ Z EC.i (t) -EC jZ(t)Cov[N. i(t) Nj Z(t)]

E ~ Cov[C. i(t), CZ (t)]I Cov[N.i (t), N.j (t) 1 - EN.i (t)EN . (t)l

+ Z Cov[N.i (t), N.1Z(t) Pc.ir (t) E'C.j9 (t).

This shows how the variance of the total cost depends on the means and

covariance of N(t) and C(t).

A.6. Approximation of Means and Variances for Required ReenlistmentRates

Reenlistment rates are computed for the first-tern work force as

a whole, and also by category. Let 0 -c .: 1 (where c nay de pend Oil

the category m) , N be force size, and the random variable X( t) be

either Ohe ntimber in the ent ire four thi year g roupj (N 4m(L) ) or the%

nnbner in the fourthI year group~ for ceLl ill (N 4mt(M. The e Xpected
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required reenlistment rate and the variance of the required reenlistment

rat e are

E(cN/X(t)) and Var (cN/X(t))

We wish to obtain approximations to these quantities by means

of the first and second moments of X(t). Theoretically, since X(t)

is a discrete random variable with positive probability of being

equal to zero, the above quantities are not finite. However, in

practice, we know that our model is only an approximation to reality,

and that the likelihood that X(t) = 0 is quite small. Therefore in

our calculations we assume that P(X(t) = 0) 0 (i.e., we truncate

the distribution of X(t) away from zero).

Let g be a continuously differentiable function. Let Y oe

any randoa variable, and let ;. = E Y be its mean value, Consider

the Taylor series expansion:

g(Y) g(u) + g'(G) [Y-1,] + 2 1) + remainder,

Assuming the remainder term can be ignored, we find

E g(Y) g(wj) + g' (w) [V-v] + F(Y-1

g(u) + 2 Var Y2

Moreover, by ignoring the second and higher order terms in the

Taylor series expansion, we have
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Var g(Y) Var (g(pi) + g'()(Y-))

Var (g' (p) (Y-,))

g,()2 Var Y

Now let g(y) i/y, and let Y = X/cN. The higher order ters

of the Taylor expansion can be dropped if they are 0(N-'), where

) 1. We know from empirical results and from the limiting statonary

distribution (see Section A.7 below) that

Var Y 0(N- )

because

E X" N

Var X N

Since Var Y = O(I/N), the above approximations using the Taylor

expansion (together with truncating X) is justified (Bickel and

Doksum (7!).

Note that 2

g (y) = -y

g"(y) = 2/y

Thus we obtain

(N/X) +XN) . .

1'IX (IX

kN ck

LX ('X)

Recal I that a funct ion g(N) is O(N 1 ) iI I il N' .(Y) rm.in,)

bounhd. N.
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=c N 1 X

I+

EX (1XA)

and

ac )

\ar(cN/X) \ar(X/oN)
4X) 4

oN) 2

- Var X.

(EX)
4

In the limiting (stationary) case (see next section), X(t) is binomial

with parameters N and 1, where =4 if X N4 m or i= 4m jf X N 4 .
44mMm I m*

In this case, EX = fN and Var X =(l - -)N. Thus

E(cN/X) I + j-

2
Var (cN/X)

A.7. The Limiting Stationary Distribution of the System

In this section we develop the limiting distribution of the system

{N (t): 1 . i < 4, 1 < m : Mt as t - . We assume that the i'ir

and the T 's are fixed, and that the T 's are parameters for the

multinomial distribution.

During the development of the work, the limiting stationary case

was actually solved before the equations of Section A.2 were developed.

and it subsequently was used as a check on the results from Sect ion A.2.

We feel the results of the limiting case are stiff iciein interest inw,

and useful to be recorded here.
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and in the limit

, 4 M ,
* I = {N L P

1M m j=2 J=i

Thus since thm 's and , 's are known, we have a systen of

M linear equations in M unkno.ns (the *'s:
im.

4 M
+lm +  l l Pj.z X = * N, l<m<M

m j=2 £k=l , m

or

H 4
(A7.5) Clm + i I Y " P ,<m<M.IM m P It 1 - Pj-l,z m- -

;vl j =2

In the remainder of this section we show how to solve these 0

simultaneous equations for the expected values and then obtain the

steady-state probability distribution Q(n), a multinomial distribution

with parameters N and im = im IN.

First, if

4
b 7""l Pj-i,z '<<M

j=2

then (A7.5) can be written as

M
Im + 1 ): b, = I N, l<mM .

lm m 1 9. m.=i1
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Define

I2 bl b M b

12 b 1 2b2 "' 2bM

M 1 Mb2  MM

* T T *i Tc aEl (* ... IM and T (T I .. , . Thn wh. have

(I + B) = N

Hence, solving for 1, we obtaiii

F* = N(I + B)-

. M1

LEMMA. Let s = tr(B) = b

Then

(I + B)-  = -(s + 1) -  B.

Proof (outline)

th 2 2
It is easy to show that the ij element of B2

, (B )iJ, is

2=
equal to sB Hence B = sB. Therefore

B2 + B = (s + 1) B,

tWe are indebted to Michael D. Miller, a Rand Corporation colleague,

for this lemma.

... .. ... . ...... . . .. , .. .... * . . . , f
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so

(s +) B - B 2 + (s + 1) l (s+) .

Thus

(B + I) ((s + 1) I - B) = (s + 1) I,

or

(B + I)- = I- (s + 1)- 1 B

Consequent Iy, we have

= N(I- +1) - ' B) '

Thus

N N= N T - I ,m m s+ M

7

s+1

Hence for all m, as t-" , we have the following itraightforward

expressions for evaluating the steady-state expectations i,.
mm

Nit -W N * T R(s + 1)
Imm = Im

and

E Nm(t) N pi-l,m i/(s + 1) 2.
m Im P-,mM
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To obtain the entire probability distribution for the steady-state

Markov chain, we define

and

a. ... 2,
im lm "i-l,m m

so that

aim= ai.lM Pi-l'M for i > 2.

Now let

= a/ a.Mim im j

so that Then E a 1 + s, and the aboves o t a im i- l ,m P i- l'm -j ,' j i 0

shows that EN. (t) = NF. Note that each E. > 0 and E ,. = 1.
im in ii,m

Consequently, since E N im(t) - N, one would guess that the

im

stationary distribution of (Ni(t)) is multinomial with parameters

N and (Fir) , the latter representing "cell probabilities." This

is in fact the ca4e.

THEORFM. Let F,(n) denote the multinomial distribution

77(N, (Cir)) on g . Then E. Q.

Proof (out line)

We need to show that (n) has the StCady-state proptrty that

C( = X P ,i6), for all n, n' L S . Since the steady-state
n,II,

n -

distribution Q(n) is unique, we will thujn have Q(n) I.(.

I!
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Now

(n) N! nim and (n') N! n ni im
R fn Sim nn n! i . imi,m ! i,m i,m im i'm

Note that in order for P to be positive, we must havenon
t

njm > n'j+,M, 1<m<M lfj_3. Moreover,

(A7.6) p M 3 .njm n'j (i - p j

non' n 11 1 ~mn-
m=l j=l n' jm j+l,m

(A.6 Pj= \~'~l,j+l,m- )

from fact that attritions are
Bernoulli trials

(En'lm n'
(sn' ]T P im from fact that access4 on mix

I-n' m is multinomial
m im m

Also recall that j+l,m = Pjm jm"

Giver n', (A7.6), we get

14 4 n k
E1 C(n) P H R. C

no n km
(m 1:.

3 n
11 jm

m j=l nj+l,m!(njm-n'j+l, )

n' +lm _\jm-n j+l,m'

jm jm

m elm

nfl
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(E n' lm

I IIN ! m n
nn im fl'ImM i m

4 nkm 3 i ij -- i

uM=1 Lk I j=1 n j+lim !njm- j+1,m

nj+1,m im m- +Im n I
Pj 1-jm 'n

For each mn,

n 1m 112m n 4m n ln-n 2m no2m n 2mno 3m
Elm &2m ... c4m C m Clm c2m

no 3 n m -o 4 no4m n 4m
12 3m c3m I

Since p.m Cj. = ,, we have

jm jm

hence we obtain

(N! ) 31
(A7.7) N! _______

4I n a n n4m [M j=n (n j no j+ I m)

4 no k 3 n j -no .1 ~(T 1 km~ (HI H Cjmn+1
M k-2 M 'mjil



3 n _T11 -91- n n

(1 1 3 m n ~ l m p ~ 4 m i r

N'4 n' k (rn' )!

4 km n4
I m k 2 n

3 n 3n' n _ n

rn 31 ( jm-n j+l,m n ~ m

n 4mn ' AM

m mn

Now let Z. n -n' 13 vr4,~
jn jm j+1,m'

3 4

Jm m M~ j~m k-2 knm I

Z 'Im En4m
m m

Also note that

l(1-im )+ Fm (1 + m 3rn (1-p )) + C~ =lm

hence

Mn j=l j r +

s-inre

Cr -- and F I
Jm I~ in

..m



-92-

Thus the last sum in (A7.7) becomes

nm (E n' !3 n. -n'
] m m " IH( m(-Pm)3 j+l,m

m £~ I II£. t H. nm! mj=l
m j= m

n4 m
m

But this sum is the multinomial expansion of

3 En' Fn'(E F. (1-Pjm + E 4~ m=~) m

m jl 'i m

Thus we get

( /n'lmnmn'l

m m

Hence we obtain

N!4 n'

4 Mk_2 km -im

flfln'. mk=2 kmm

m I 
m

Thus the proof is complete.
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Appendix B

TABL-EI COMP UTAT IONS OF KEY OUTPUT QUANTI T IES
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Appendix C

DERIVATION FOR NUMBER OF REQUIRED RECRUITS

In this Appendix we derive the %alue a required such that

P(R = c/Y < r 1A = a) - b, where A = a is the number of people that

should be recruited to assure a probability of at least b that a

reenlistment rate R no higher than r will be required to reenlist

c of those people for the career force, and where p is the probability

that an individual recruit makes it through his initial four-year

obligation.

If R is the (random) required reenlistment rate and Y is the

number of people remaining after four years of service of those a who

are recruited initially, then R = c/Y, and Y is binomial with parameters

a and p. Thus Y has mean pa and variance p(l - p)a. Then

Z = (Y - pa)/Vp(l-p)a is approximately a standard normal (mean 0,

variance 1) random variable, and we let zb be the upper quantile

point such that P(Z !, z b b.

Since

p(R < rA = a) = P(c/Y rA = a)

- P(c/r , YJA = a)

- - ap

r-P(Z > rA = a) ,

/p (1-p*a
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we obtain

c

b- r ap

Solving for a, we obtain a quadratic equation in a, and its solution

2pc/r + z b 2 (I + 12pc/r + z b 2p(l-0)I - 4p 2c 2/

2p 
2

Lam~
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